首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Seasonal variation in dehydrins and other soluble proteins of Scots pine (Pinus sylvestris L.) needles, buds and bark were analyzed monthly for 1 year from 1998 to 1999. Dehydrin-related proteins of 60 and 56 kDa were identified immunologically in all tissues. The concentration of the 60-kDa dehydrin was highest during the winter (October-February) in buds and bark but increased in early spring (March-May) in needles. Accumulation of the 60-kDa dehydrin in the needles in springtime was related to the decreasing osmotic potentials of the needles. The 56-kDa dehydrin was present only during the growing season, as was a 50-kDa dehydrin, which only appeared in bud and bark tissues. The soluble protein concentration of needles did not differ significantly between seasons, but in bark and bud tissues the protein concentrations were at their lowest level in newly grown tissues (June-August). The level of several polypeptides was higher during the winter-spring period than in the growing season, especially in bark and bud tissues. These proteins may be related to cold hardiness or dormancy in overwintering Scots pine. Dehydrin-related proteins in needles are linked to springtime changes in the osmotic status of needles rather than to their cold acclimation.  相似文献   

3.
Scots pine nursery seedlings were planted in pots, five seedlings per treatment, and placed in an experimental field at the University of Oulu in northern Finland at the beginning of June 1997. Copper and nickel sulphates were mixed with forest mineral soil before seedling planting. The metal levels ranged from 0 to 25 mg Ni kg(-1) dry soil and 0 to 50 mg Cu kg(-1) in dry soil and in combinations of both metals. Current year's needles for element analyses, EDS microanalyses, microscopy and glutathione and peroxidase activity analyses were collected from 1-5 seedlings per treatment in September. Seedling biomass in controls, Cu25 and Cu50 differed significantly from the Ni25Cu50 treatment. The root/shoot ratio was highest in the Ni5 treatment, indicating good root growth, though the roots were visibly healthier in the Cu25 treatment than in the Ni5 treatment. At higher Ni levels, the condition of roots deteriorated. The proportion of plasmolysed mesophyll cells was highest in the Ni25 treatment. Copper-treated seedlings did not suffer from Cu stress, because no severe injuries were seen in either the roots or the needles in Cu-exposed seedlings. The needle concentrations of Cu increased only slightly due to treatments. Ni accumulation in needles increased with increasing concentrations in soil. Needles of Cu-treated seedlings had less oxidized glutathione than those of Ni-treated seedlings, but the roots had higher, not significantly, peroxidase activity levels. Light-colored, swollen thylakoids were occasionally observed in the Ni25Cu50 treatment, indicating some interaction between Ni and Cu. Ni seemed to cause more oxidative stress to the seedlings than copper, which was manifested as a decreased GSH level and an increased proportion of GSSG in the Ni treatments. Copper together with nickel strongly decreased root growth, the root/shoot ratio being lowest in the Ni25Cu50 treatment.  相似文献   

4.
The concentration of free amino acids and total nitrogen was studied in needles, stems and roots of seedlings of Pinus sylvestris L. for five weeks during the second growth period ("summer"). In one group of seedlings the source/sink relation was disturbed through removal of the terminal buds. The seedlings were cultivated in artificial year-cycles in a climate chamber.
Total nitrogen increased in needles and sterns of intact seedlings in the beginning of the "summer" and decreased during shoot growth. In seedlings, from which the buds had been removed, nitrogen remained at high levels in the primary needles and accumulated in steins and roots. The results are consistent with utilization of nitrogen in older needles and in the stem during shoot elongation.
The pool of free amino acids increased in the beginning of the "summer" and decreased after bud break in primary needles, stems and roots. Arginine and glutamine, in the roots also asparagine, were the dominating amino acids (amides included). Together, these compounds (plus glutamate and aspartate) contributed about 90% of the nitrogen in the amino acid pool in all organs. In primary needles and in the stem, arginine predominated at the end of hardening (75–85% of the amino acid nitrogen). Free amino acids contributed at most ca 10% of the total nitrogen in primary needles, where the ratio of free amino acid nitrogen: total nitrogen was highest at the end of dormancy and in the early "summer". Free amino acids accumulated after bud removal in primary needles and especially in stems and roots. Glutamine became relatively more dominant than arginine in the different organs.
The observations are consistent with the role of arginine and glutamine for storage and transport of nitrogen in conifers. Because of the low concentrations of amino acid nitrogen in the primary needles, arginine is not considered a major nitrogen reserve in needles of Scots pine seedlings.  相似文献   

5.
The aim of this study was to investigate the potential of different isolates of ectomycorrhizal (EM) fungi to enhance the growth of Pinus sylvestris seedlings in five natural peat substrates with different nitrogen concentrations, and the effect of the Scots pine seedlings and fungal inoculum on the formation of dissolved inorganic and organic nitrogen in peat. Utilization of different organic nitrogen compounds by microbial community in the peat was also investigated using Biolog MT MicroPlates. Inoculation of the seedlings with EM fungi enhanced seedling growth. Piloderma croceum increased root growth especially, whereas Lactarius rufus increased needle growth and Suillus variegatus I, II and III improved both root and needle growth. All the EM fungi also significantly affected stem growth. Nitrogen concentration of the peat did not affect seedling growth as much as the EM fungi. At the lowest peat N concentration (1.17%) NH 4 + mineralisation was lower and DON (dissolved organic nitrogen) accumulation higher than at higher peat N concentrations. The EM fungal isolates had different effects on NH 4 + and DON accumulation/degradation in peat. The EM fungal isolates significantly increased NH 4 + formation in the peat, whereas L. rufus and P. croceum had an opposite effect on DON accumulation. S. variegatus I significantly decreased the DON concentrations during peat incubation. The N concentration of the peat slightly affected the utilization of amino acids and polyamines by the microbial community, whereas inoculation with S. variegatus I, II or III had no effect.  相似文献   

6.
de la Rosa  T.M.  Aphalo  P.J.  Lehto  T. 《Plant and Soil》1998,201(1):17-25
The effects of supplementary far-red sidelight on the formation of mycorrhizas and on the accumulation and allocation of dry weight and mineral nutrients were studied in Scots pine (Pinus sylvestris L.) seedlings. Starting one week after germination the seedlings were subjected to two different light quality regimes: control and simulated sparse-canopy conditions (FR+). In the FR+ regime, light reflected by neighbouring plants was simulated by means of supplementary far-red light sources, which reduced the horizontal red/far-red photon ratio (R:FR) without affecting PAR. Seedlings were harvested after three months of treatment. FR+ increased stem height and decreased the total dry weight of seedlings. Dry weight allocation to needles was not affected, whereas dry weight allocation to roots was reduced and that to stems was increased in FR+ treated seedlings. The total number of short root tips and developing mycorrhizas per seedling were lower in FR+ than in control plants. Most short roots were developing mycorrhizas, while non-mycorrhizal short roots and mycorrhizas with mantle or external mycelium were very scarce. Changes in the allocation of nutrients in general followed the changes in dry weight allocation, and changes in nutrient content followed those in total dry weight. However, mismatches among these changes resulted in significant changes in nutrient concentrations in some organs: the concentrations of nitrogen and potassium in needles and the concentration of nitrogen in stems were higher in FR+ than in control seedlings. Changes in biomass and nutrient allocation under low R:FR may promote rapid height growth during early development in stands of Scots pine seedlings, but concomitant reductions in growth of the root system and mycorrhizas may negatively affect tree performance over the long term.  相似文献   

7.
Both chlorophyll a and b and polypeptides of the photosynthetic apparatus are found in gymnosperm seedlings. germinated and grown in absolute darkness. The photosystem II (PSII) activity is, however, limited, probably due to an inactive oxygen evolving system. In the present study dark-grown seedlings of Scots pine ( Pinus sylvestris L.) were transferred to light and changes in antenna size and the activation process of PSII were investigated using fluorescence measurements and quantitative western blotting. It was found that the activation process is rapid, requires very little light and that strong light inhibits the process. It takes place without any changes in the primary reactions of PSII. Furthermore, all polypeptides except the major light-harvesting chlorophyll a/b -binding protein complex of PSII (LHCII) were present in dark-grown seedlings in amounts comparable to the light treated control. The dark-grown seedlings had the same LHCII polypeptide composition as light treated seedlings, and the LHCII present seemed to be fully connected to the reaction centre. The results indicate that activation of PSII in dark-grown conifer seedlings resembles the photoactivation process of angiosperms. This implies that the fundamental processes in the assembly of the photosystem II complex is the same in all plants, but that the regulation differs between different taxa.  相似文献   

8.
Kinetics of net phosphate (Pi) uptake was measured on intact ectomycorrhizal and non‐mycorrhizal Pinus sylvestris seedlings using a semihydroponic cultivation method. The depletion of Pi in a nutrient solution was assessed over a 160–0.2 μM Pi gradient. Growth of the pine seedlings was P limited and measurements were performed 7 and 9 weeks after inoculation. Three ectomycorrhizal fungi were studied: Paxillus involutus, Suillus bovinus and Thelephoraterrestris. Pi uptake was extremely fast in plants colonised by P. involutus. The Pi concentration dropped below 0.2 μM within 4–5 h. In plants colonised with S. bovinus this occurred in 5–6 h and in plants associated with T. terrestris 8 h were needed to run through the whole concentration range. Non‐mycorrhizal plants of similar size and nutrient status decreased Pi to a concentration between 1 and 2 μM in 18 h. Data were curve fitted to a two‐phase Michaelis‐Menten equation. The apparent kinetic constants, Km and Vmax, for the high affinity Pi uptake system of the pine roots could be estimated accurately. Vmax of this system was up to 7 times higher in pines associated with P. involutus than in non‐mycorrhizal seedlings. The intact extraradical mycelium greatly increased the absorption surface area of the roots (Vmax). Non‐mycorrhizal plants had a Km between 7.8 and 16.4 μM Pi. Plants mycorrhizal with P. involutus had Km values between 2.4 and 7.2, plants colonised with S. bovinus had a Km between 5.1 and 12.3, and seedlings associated with T. terrestris had a Km from 4.6 to 10.1 μM Pi. All 3 ectomycorrhizal fungi had a strong impact on the Pi absorption capacity of the pine seedlings. The results also demonstrated that there is substantial heterogeneity in kinetic parameters among the different mycorrhizal root systems.  相似文献   

9.
The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.  相似文献   

10.
Summary Ultraviolet-B light (UV-B) and ultraviolet-A light (UV-A) at higher doses exert a strong inhibitory (toxic) effect on axis growth in Scots pine (Pinus sylvestris L.) seedlings. This effect is unrelated to control of growth rate by phytochrome. Rather, after a toxic UV dose growth of the pine seedling no longer responded to phytochrome. Both, the effect of UV-B as well as the inhibiting effect of UV-A could be photoreactivated by blue light (B). The action of UV-A was 2 fold: (i) it exerted a toxic effect which could be photoreactivated by B, and (ii) applied after UV-B it photoreactivated to some extent the toxic UV-B effect. Obviously, the UV-A range causes a toxic effect, and at the same time is capable of photoreactivating the toxic UV effect. At higher doses the toxic effect prevails.  相似文献   

11.
Rising temperatures and more frequent and severe climatic extremes as a consequence of climate change are expected to affect growth and distribution of tree species that are adapted to current local conditions. Species distribution models predict a considerable loss of habitats for Pinus sylvestris. These models do not consider possible intraspecific differences in response to drought and warming that could buffer those impacts. We tested 10 European provenances of P. sylvestris, from the southwestern to the central European part of the species distribution, for their response to warming and to drought using a factorial design. In this common‐garden experiment the air surrounding plants was heated directly to prevent excessive soil heating, and drought manipulation, using a rain‐out shelter, permitted almost natural radiation, including high light stress. Plant responses were assessed as changes in phenology, growth increment and biomass allocation. Seedlings of P. sylvestris revealed a plastic response to drought by increased taproot length and root–shoot ratios. Strongest phenotypic plasticity of root growth was found for southwestern provenances, indicating a specific drought adaptation at the cost of overall low growth of aboveground structures even under non‐drought conditions. Warming had a minor effect on growth but advanced phenological development and had a contrasting effect on bud biomass and diameter increment, depending on water availability. The intraspecific variation of P. sylvestris provenances could buffer climate change impacts, although additional factors such as the adaptation to other climatic extremes have to be considered before assisted migration could become a management option.  相似文献   

12.
Indole-3-acetic acid (IAA) homeostasis was investigated during seed germination and early seedling growth in Scots pine (Pinus sylvestris). IAA-ester conjugates were initially hydrolyzed in the seed to yield a peak of free IAA prior to initiation of root elongation. Developmental regulation of IAA synthesis was observed, with tryptophan-dependent synthesis being initiated around 4 d and tryptophan-independent synthesis occurring around 7 d after imbibition. Induction of catabolism to yield 2-oxindole-3-acetic acid and irreversible conjugation to indole-3-acetyl-N-aspartic acid was noticed at the same time as de novo synthesis was first detected. As a part of the homeostatic regulation IAA was further metabolized to two new conjugates: glucopyranosyl-1-N-indole-3-acetyl-N-aspartic acid and glucopyranosyl-1-N-indole-3-acetic acid. The initial supply of IAA thus originates from stored pools of IAA-ester conjugates, mainly localized in the embryo itself rather than in the general nutrient storage tissue, the megagametophyte. We have found that de novo synthesis is first induced when the stored pool of conjugated IAA is used up and additional hormone is needed for elongation growth. It is interesting that when de novo synthesis is induced, a distinct induction of catabolic events occurs, indicating that the seedling needs mechanisms to balance synthesis rates for the homeostatic regulation of the IAA pool.  相似文献   

13.
The occurrence of GS isoenzymes has been investigated in Scots pine (Pinus sylvestris) seedlings. A transient increase of glutamine synthetase (GS, EC 6.3.1.2) activity was observed in the cotyledon whorl of plants treated with the herbicide phosphinotricin (PPT). The increase in GS activity was accompanied by a parallel accumulation of GS1 protein, which remained at high levels throughout the PPT treatment. Two-dimensional SDS-PAGE western analysis showed that pine extracts contained two GS1 polypeptides which differ in their corresponding isoelectric points. Analysis of crude extracts by ion-exchange chromatography led to the separation of two GS isoforms. The first peak (GS1-a) eluted from the columns at a low ionic strength (0.15-0.18 M KCl), whereas the second one (GS1-b) was detected at 0.5 M KCl. A detailed molecular study of both GS holoenzymes confirmed that their subunits were similar in size (about 41 kDa) but different in charge. All these data clearly demonstrate the presence of two GS1 forms in Scots pine cotyledons. Moreover, a comparison of isolated GS isoproteins with the recombinantly expressed Scots pine cytosolic subunit suggests that GS1-a corresponds to the previously characterized cDNA (pGSP114) whereas GS1-b is a minor GS isoenzyme with increased relative abundance in phosphinotricin treated plants.  相似文献   

14.
One- and two-“year”-old seedlings of Pinus silvestris L., from which the buds had been removed, were studied for five weeks during the second and third growth period, respectively. Intact seedlings were used as controls. The seedlings were cultivated under controlled conditions in a climate chamber. The growth of the seedlings was determined and the one-“year”-old needles assayed for changes in net photosynthesis and ribulose bisphosphate carboxylase activity and in the levels of protein, Kjeldahl nitrogen, chlorophyll and starch. In the control the carboxylase activity and the content of protein, Kjeldahl nitrogen and starch in the needles increased in the beginning of the “summer” and decreased during the shoot growth period. The starch content was higher after bud removal (decapitation), since the carbohydrate could not be utilized for the growth of the new shoot. Decapitation did not affect the growth rate of the roots. The content of Kjeldahl nitrogen and total and soluble protein in the needles was higher in the decapitated seedlings during the period of shoot elongation in the control. Total nitrogen, but not protein, reached high levels, indicating accumulation of non-protein compounds. The general course of the chlorophyll pattern was not affected. Higher ribulose bisphosphate carboxylase activity than in the control was observed in the later part of the experimental periods. The higher levels of protein and nitrogen as well as of carboxylase activity after decapitation support the interpretation that soluble protein, including the carboxylase, and possibly other nitrogen compounds in the older needles are used for growth of the shoot. The loss of protein and nitrogen and of carboxylase activity in the control did not seem to be due to mineral deficiency in the substrate. Despite higher levels of carboxylase activity and similar chlorophyll concentrations, light-saturated net photosynthesis was lower after decapitation. The ratio between photosynthesis and photorespiration was not affected.  相似文献   

15.
Domisch  Timo  Finér  Leena  Lehto  Tarja  Smolander  Aino 《Plant and Soil》2002,239(2):173-185
We studied the effect of soil temperature on nutrient allocation and mycorrhizal development in seedlings of Scots pine (Pinus sylvestris L.) during the first 9 weeks of the growing season. One-year-old seedlings were grown in Carex-peat from a drained and forested peatland at soil temperatures of 5, 9, 13 and 17 °C under controlled environmental conditions. Fourteen seedlings from each temperature treatment were harvested at intervals of three weeks and the current and previous year's parts of the roots, stems and needles were separated. Mineral nutrient and Al contents in all plant parts were determined and the tips and mycorrhizas of the new roots were counted. Microbial biomass C and N in the growth medium were determined at the end of the experiment. None of the elements studied, except Fe, were taken up from the soil by the seedlings during the first three weeks. Thereafter, the contents of all the elements increased at all soil temperatures except 5 °C. Element concentrations in needles, stems and roots increased with soil temperature. Higher soil temperature greatly increased the number of root tips and mycorrhizas, and the numbers of mycorrhizas increased more than did the length of new roots. Cenococcum geophilum was relatively more abundant at lower soil temperatures (5 and 9 °C) than at higher ones (13 and 17 °C). A trend was observed for decreased microbial biomass C and N in the peat soil at higher soil temperatures at the end of the experiment.  相似文献   

16.
Scots pine ( Pinus sylvestris L.) is generally resistant to chilling temperatures. Porphyrin metabolism under low temperature stress was studied in etiolated seedlings of Scots pine. Low temperatures affect porphyrin accumulation in at least 3 different temperature sensitive sites: 1) the light activated accumulation of 5-aminolevulinic acid, a porphyrin precursor, 2) the metabolism of 5-aminolevulinic acid to form porphyrins and 3) a preferential accumulation of chlorophyll a over chlorophyll b . The temperature sensitivity of pine is compared to maize ( Zea mays L.), a chilling sensitive plant.  相似文献   

17.
Disentangling how variation in reproduction and growth is linked in plants across different ecological scales, and how allocation rules change in response to stress are fundamental aspects of life history theory. Although it is known that reproductive allocation is an allometric process and that environmental conditions can influence demographic traits, patterns of variation in vegetative and reproductive functions across and within individuals of tree species suffering drought-induced decline have rarely been documented. In this study we use Scots pine (Pinus sylvestris L.) as a model species to explore patterns of variation in cone production and growth in two declining populations at the southern edge of its distribution. A Bayesian approach was used to assess how these demographic traits vary as a function of drought effects and competition and covary across different ecological scales. The allometric trajectories relating tree size with cone production and growth differed along gradients of drought impacts and biotic interactions. Although reproduction and growth increased with tree size, cone production reached a maximum at intermediate sized trees and stabilized or decreased at larger sizes. Drought stress effects (defoliation at the tree level and overall decline at the plot level) and competition for resources reduced cone production and growth. Our results also showed differential effects of defoliation on cone production depending on tree size, with stronger effects on larger individuals. After accounting for these effects, much of the variation of demographic traits and correlations among them occurred at small ecological scales across individuals (i.e. within plots) and within individuals across years. This resulted in covariations between demographic traits among nearby individuals and within individuals through time, suggesting a consistent advantage in resource acquisition of some individuals within plots, and trade-offs between growth and cone production within trees across years. In conclusion, this study reports that drought-induced forest decline is associated with lower growth and cone production in Scots pine, which could contribute to explain the long-term impacts of drought in southern populations of this species and, in particular, its low regeneration capacity after severe drought.  相似文献   

18.
Scots pine (Pinus sylvestris L., Pinaceae) produces a terpenoid resin which consists of monoterpenes and resin acids that offer protection against herbivores and pathogen attacks. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defence reactions in conifers and might be used to increase resistance against biotic damage. Different amounts of MJ (control, 10 mm , and 100 mm ) were applied to Scots pine to examine the vigour, physiology, herbivory performance, and induction of secondary compound production in needles, bark, and xylem of 2‐year‐old Scots pine seedlings. Growth decreased significantly in both MJ treated plants, and photosynthesis decreased in the 100 mm MJ treated plants, when compared to 10 mm MJ or control plants. The large pine weevil (Hylobius abietis L.) (Coleoptera: Curculionidae) gnawed a significantly smaller area of stem bark in the 100 mm treated plants than in the control or 10 mm treated plants. The 100 mm MJ treatment increased the resin acid concentration in the needles and xylem but not in the bark. Furthermore, both MJ treatments increased the number of resin ducts in newly developing xylem. The changes in plant growth and chemical parameters after the MJ treatments indicate shifts in carbon allocation, but MJ also affects plant physiology and xylem development. Terpenoid resin production was tissue‐specific, but generally increased after MJ treatments, which means that this compound may offer potential protection of conifers against herbivores.  相似文献   

19.
20.
In vivo nitrate reductase (EC 1.6.6.1) activity was measured in seedlings of Scots pine ( Pinus sylvestris L.) inoculated with Cenococcum geophilum (Sow.) Ferd. & Winge, Paxillus involutus (Batsch:Fr) Fr, Piloderma croceum Erikss, & Hjortst, and Suillus variegatus (Fr.) O. Kuntze. The activity was higher in the mycorrhizal pine roots than was previously found in the fungus symbiont alone, but lower than in the roots of nonmycorrhizal pine seedlings. The differences observed in a previous study between the fungal species under pure culture conditions were not found in the present work for mycorrhiza synthezised with the same fungal species. An increase in the nitrate concentration of the nutrient solution increased the proportion of the nitrate reductase activity in the needles. The mycorrhizal root tips had higher nitrate reductase activity than nonmycorrhizal root tips in the same root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号