首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
M R Ball  P McLean 《Enzyme》1982,28(4):368-374
The activities of adenine nucleotide translocase (ANT), Na+-K+-ATPase (EC 3.6.1.3) and Mg2+-ATPase (EC 3.6.1.3) together with mitochondrial marker enzymes, succinic dehydrogenase (EC 1.3.99.1) and glutamate dehydrogenase (EC 1.4.1.2), were measured in liver, kidney, brain and testis from normal and thyroidectomised rats. Na+-K+-ATPase decreased by approximately 50% in liver and kidney; ANT decreased only in liver (-40%) while the activity of ANT per gram kidney increased by 38%. The activity of Mg2+-ATPase closely correlated with the pattern of change of ANT. The hormonal and substrate regulation of ANT is discussed in relation to its role in the regulation of intracellular phosphate potential and compartmentation in liver and kidney.  相似文献   

2.
3.
Parathyroid hormone (PTH) inhibits Na+-K+-ATPase activity by serine phosphorylation of the alpha1 subunit through protein kinase C (PKC)- and extracellular signal-regulated kinase (ERK)-dependent pathways. Based on previous studies we postulated that PTH regulates sodium pump activity through isoform-specific PKC-dependent activation of ERK. In the present work utilizing opossum kidney cells, a model of renal proximal tubule, PTH stimulated membrane translocation of PKCalpha by 102 +/- 16% and PKCbetaI by 41 +/- 7% but had no effect on PKCbetaII and PKCzeta. Both PKCalpha and PKCbetaI phosphorylated the Na+-K+-ATPase alpha1 subunit in vitro. PTH increased the activity of PKCalpha but not PKCbetaI. Coimmunoprecipitation assays demonstrated that treatment with PTH enhanced the association between Na+-K+-ATPase alpha1 subunit and PKCalpha, whereas the association between Na+-K+-ATPase alpha1 subunit and PKCbetaI remained unchanged. A PKCalpha inhibitory peptide blocked PTH-stimulated serine phosphorylation of the Na+-K+-ATPase alpha1 subunit and inhibition of Na+-K+-ATPase activity. Pharmacologic inhibition of MEK-1 blocked PTH-stimulated translocation of PKCalpha, whereas transfection of constitutively active MEK-1 cDNA induced translocation of PKCalpha and increased phosphorylation of the Na+-K+-ATPase alpha1 subunit. In contrast, PTH-stimulated ERK activation was not inhibited by pretreatment with the PKCalpha inhibitory peptide. Inhibition of PKCalpha expression by siRNA did not inhibit PTH-mediated ERK activation but significantly reduced PTH-mediated phosphorylation of the Na+-K+-ATPase alpha1 subunit. Pharmacologic inhibition of phosphoinositide 3-kinase blocked PTH-stimulated ERK activation, translocation of PKCalpha, and phosphorylation of the Na+-K+-ATPase alpha1 subunit. We conclude that PTH stimulates Na+-K+-ATPase phosphorylation and decreases the activity of Na+-K+-ATPase by ERK-dependent activation of PKCalpha.  相似文献   

4.
Changes in the number of Na+-K+-ATPase alpha-subunits, Na+-K+-ATPase activity and glycogen content of the crucian carp (Carassius carassius) brain were examined to elucidate relative roles of energy demand and supply in adaptation to seasonal anoxia. Fish were collected monthly around the year from the wild for immediate laboratory assays. Equilibrium dissociation constant and Hill coefficient of [3H]ouabain binding to brain homogenates were 12.87+/-2.86 nM and -1.18+/-0.07 in June and 11.93+/-2.81 nM and -1.17+/-0.06 in February (P>0.05), respectively, suggesting little changes in Na+-K+-ATPase alpha-subunit composition of the brain between summer and winter. The number of [3H]ouabain binding sites and Na-K-ATPase activity varied seasonally (P<0.001) but did not show clear connection to seasonal changes in oxygen content of the fish habitat. Six weeks' exposure of fish to anoxia in the laboratory did not affect Na+-K+-ATPase activity (P>0.05) confirming the anoxia resistance of the carp brain Na pump. Although anoxia did not suppress the Na pump, direct Q10 effect on Na+-K+-ATPase at low temperatures resulted in 10 times lower catalytic activity in winter than in summer. Brain glycogen content showed clear seasonal cycling with the peak value of 203.7+/-16.1 microM/g in February and a 15 times lower minimum (12.9+/-1.2) in July. In winter glycogen stores are 15 times larger and ATP requirements of Na+-K+-ATPase at least 10 times less than in summer. Accordingly, brain glycogen stores are sufficient to fuel brain function for about 8 min in summer and 16 h in winter, meaning about 150-fold extension of brain anoxia tolerance by seasonal changes in energy supply-demand ratio.  相似文献   

5.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

6.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

7.
The activity of the Na+-K+-ATPase along the intestinal mucosa of the gilthead seabream has been examined. Under optimal assay conditions, found at 35 degrees C, pH 7.5, 2-5 mM MgCl2, 5 mM ATP, 10 mM K+ and 200 mM Na+, maximal Na+-K+-ATPase activities were found in the microsomal fraction of pyloric caeca (PC) and anterior intestine (AI), which were more than two-fold the activity measured in the microsomes from the posterior intestine (PI). Na+-K+-ATPase activities from PC, AI and PI displayed similar pH dependence, optimal Mg2+/ATP and Na+/K+ ratios, affinities for Mg2+ and ATP, and inhibition by vanadate. However, considerable differences regarding sensitivity to ouabain, inhibition by calcium and responses to ionic strength were observed between segments. Thus, Na+-K+-ATPase activity from the AI was found to be ten-fold more sensitive to ouabain and calcium than the enzyme from the PC and PI and displayed distinct kinetic behaviours with respect to Na+ and K+, compared to PC and PI. Analysis of the data from the AI revealed the presence of two Na+-K+-ATPase activities endowed with distinguishable biochemical characteristics, suggesting the involvement of two different isozymes. Regional differences in Na+-K+-ATPase activities in the intestine of the gilthead seabream are compared with literature data on Na+-K+-ATPase isozymes and discussed on the basis of the physiological differences between intestinal regions.  相似文献   

8.
Using ouabain sensitive 86Rb uptake by the vessel wall, we previously showed that sodium-potassium pump activity is decreased in the arteries and veins, and that the sodium-potassium pump inhibitor (SPI) is increased in the plasma of dogs with one-kidney, one wrap (1-K, 1W) hypertension, a low renin model of hypertension. We also showed in rats with a similar type of hypertension that the membrane potential of vascular smooth muscle cells in arteries is decreased, and that this decrease can be reproduced in arterial cells in arteries from normal rats by applying plasma from the hypertensive animals. One endogenous SPI in human plasma has been reported to be ouabain or its isomer. In this study, we used a newly available Dupont ouabain enzyme immunoassay kit to examine plasma and kidneys for SPI in dogs with 1-K, 1W hypertension. We also examined 1) the inhibiting activity of plasma of Na+, K(+)-ATPase obtained from normal kidneys, and 2) the Na+, K(+)-ATPase activity of the kidneys from these hypertensive animals. 1-K, 1W hypertension was produced in dogs by wrapping the left kidney in a silk bag and removing the right kidney. The removed kidney was kept at -70 degrees C till assayed. After 4 weeks of hypertension, the remaining kidney was removed and stored at -70 degrees C till assayed. Blood samples were drawn before and at weeks 3 and 4 of hypertension. Plasma levels of "ouabain" and Na+, K(+)-ATPase inhibitory activity were increased at weeks 3 and 4 of hypertension, compared to pre-hypertension levels. Renal tissue "ouabain" levels were also increased at week 4 of hypertension. However, renal Na+, K(+)-ATPase activity was unchanged. These findings, using two different assays, confirm our 1980 conclusion that SPI is elevated in the plasma of dogs with 1-K, 1W hypertension. The absence of renal Na+, K(+)-ATPase inhibition, despite increased plasma and renal SPI in these animals, may have important implications for the development of this type of hypertension.  相似文献   

9.
The present study evaluated the hypothesis of whether increases in vectorial Na+ transport translate into facilitation of Na+-dependent L-DOPA uptake in cultured renal epithelial tubular cells. Increases in vectorial Na+ transport were obtained in opossum kidney (OK) cells engineered to overexpress Na+-K+-ATPase after transfection of wild type OK cells with the rodent Na+-K+-ATPase alpha1 subunit. The most impressive differences between wild type and transfected OK cells are that the latter overexpressed Na+-K+-ATPase accompanied by an increased activity of the transporter. Non-linear analysis of the saturation curve for l-DOPA uptake revealed a Vmax value (in nmol mg protein/6 min) of 62 and 80 in wild type and transfected cells, respectively. The uptake of a non-saturating concentration (0.25 microM) of [14C]-L-DOPA in OK-WT cells was not affected by Na+ removal, whereas in OK-alpha1 cells accumulation of [14C]-L-DOPA was clearly dependent on the presence of extracellular Na+. When Na+ was replaced by choline, the inhibitory profile of neutral l-amino acids, but not of basic and acidic amino acids, upon [14C]-L-DOPA uptake in both cell types, was significantly greater than that observed in the presence of extracellular Na+. It is concluded that enhanced ability of OK cells overexpressing Na+-K+-ATPase to translocate Na+ from the apical to the basal cell side correlates positively with their ability to accumulate L-DOPA, which is in agreement with the role of Na+ in taking up the precursor of renal dopamine.  相似文献   

10.
I Sall  P Metais  G Ferard 《Enzyme》1977,22(3):158-165
Subcellular fraction (brush border, mitochondria, microsomes and plasma membranes) are isolated from the rat intestinal epithelial cells. A comparison was made between the effect of cold storage, freeze-thawing, heating and of some chemicals (DMSO, DTT, glycerol, sucrose) on the stability of Mg2+ and (Na+-K+) dependent ATPases in these fractions in order to determine possible difference linked to the localization in the enterocyte. Enzymatic activities were found more stable at -20 degrees C than at +4 degrees C. Microsomal (Na+-K+)-ATPase increased in activity until the 8th day, then declined. Brush border (Na+-K+)-ATPase was the least resistant of all fractions. For Mg2+-ATPase, that from mitochondria was that had lost much more activity (84%) in 15 days at +4 degrees C. With freeze-thawing there was a comparable decrease in all activities (20-35%). by heating between 35 and 60 degrees C, Mg2+-ATPase was shown to be more heat resistant than (Na+-K+)-ATPase. The addition of some stabilizing chemicals (DMSO, glycerol, sucrose) improved the heat stability of the two enzymes: better results were obtained with glycerol for Mg2+-ATPase and sucrose for (Na+-K+)-ATPase. These differences might be due to the compositon in membraine lipids or to the nature of the enzymes studied.  相似文献   

11.
We investigated the relationship between body size, Na(+)-K(+)-ATPase molecular activity, and membrane lipid composition in the kidney of five mammalian and eight avian species ranging from 30-g mice to 280-kg cattle and 13-g zebra finches to 35-kg emus, respectively. Na(+)-K(+)-ATPase activity was found to be higher in the smaller species of both groups. In small mammals, the higher Na(+)-K(+)-ATPase activity was primarily the result of an increase in the molecular activity (turnover rate) of individual enzymes, whereas in small birds the higher Na(+)-K(+)-ATPase activity was the result of an increased enzyme concentration. Phospholipids from both mammals and birds contained a relatively constant percentage of unsaturated fatty acids; however, phospholipids from the smaller species were generally more polyunsaturated, and a complementary significant allometric increase in monounsaturate content was observed in the larger species. In particular, the relative content of the highly polyunsaturated docosahexaenoic acid [22:6(n-3)] displayed the greatest variation with body mass, scaling with allometric exponents of -0.21 and -0.26 in the mammals and birds, respectively. This allometric variation in fatty acid composition was correlated with Na(+)-K(+)-ATPase molecular activity in mammals, whereas in birds molecular activity only correlated with membrane cholesterol content. These relationships are discussed with respect to the metabolic intensity of different-sized animals.  相似文献   

12.
Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7 days post-MI, PLM protein expression was increased by two- and fourfold, respectively. To simulate increased PLM expression post-MI, PLM was overexpressed in normal adult rat myocytes by adenovirus-mediated gene transfer. PLM overexpression did not affect the relative level of phosphorylation on serine68 of PLM. Na+-K+-ATPase activity was measured as ouabain-sensitive Na+-K+ pump current (Ip). Compared with control myocytes overexpressing green fluorescent protein alone, Ip measured in myocytes overexpressing PLM was significantly (P < 0.0001) lower at similar membrane voltages, pipette Na+ ([Na+]pip) and extracellular K+ ([K+]o) concentrations. From -70 to +60 mV, neither [Na+]pip nor [K+]o required to attain half-maximal Ip was significantly different between control and PLM myocytes. This phenotype of decreased V(max) without appreciable changes in K(m) for Na+ and K+ in PLM-overexpressed myocytes was similar to that observed in MI rat myocytes. Inhibition of Ip by PLM overexpression was not due to decreased Na+-K+-ATPase expression because there were no changes in either protein or messenger RNA levels of either alpha1- or alpha2-isoforms of Na+-K+-ATPase. In native rat cardiac myocytes, PLM coimmunoprecipitated with alpha-subunits of Na+-K+-ATPase. Inhibition of Na+-K+-ATPase by PLM overexpression, in addition to previously reported decrease in Na+-K+-ATPase expression, may explain altered V(max) but not K(m) of Na+-K+-ATPase in postinfarction rat myocytes.  相似文献   

13.
The Mozambique tilapia, Oreochromis mossambicus, is capable of surviving a wide range of salinities and temperatures. The present study was undertaken to investigate the influence of environmental salinity and temperature on osmoregulatory ability, organic osmolytes and plasma hormone profiles in the tilapia. Fish were acclimated to fresh water (FW), seawater (SW) or double-strength seawater (200% SW) at 20, 28 or 35 degrees C for 7 days. Plasma osmolality increased significantly as environmental salinity and temperature increased. Marked increases in gill Na(+), K(+)-ATPase activity were observed at all temperatures in the fish acclimated to 200% SW. By contrast, Na(+), K(+)-ATPase activity was not affected by temperature at any salinity. Plasma glucose levels increased significantly with the increase in salinity and temperature. Significant correlations were observed between plasma glucose and osmolality. In brain and kidney, content of myo-inositol increased in parallel with plasma osmolality. In muscle and liver, there were similar increases in glycine and taurine, respectively. Glucose content in liver decreased significantly in the fish in 200% SW. Plasma prolactin levels decreased significantly after acclimation to SW or 200% SW. Plasma levels of cortisol and growth hormone were highly variable, and no consistent effect of salinity or temperature was observed. Although there was no significant difference among fish acclimated to different salinity at 20 degrees C, plasma IGF-I levels at 28 degrees C increased significantly with the increase in salinity. Highest levels of IGF-I were observed in SW fish at 35 degrees C. These results indicate that alterations in gill Na(+), K(+)-ATPase activity and glucose metabolism, the accumulation of organic osmolytes in some organs as well as plasma profiles of osmoregulatory hormones are sensitive to salinity and temperature acclimation in tilapia.  相似文献   

14.
To examine the role of changes in myocardial metabolism in cardiac dysfunction in diabetes mellitus, rats were injected with streptozotocin (65 mg/kg body wt) to induce diabetes and were treated 2 wk later with the carnitine palmitoyltransferase inhibitor (carnitine palmitoyltransferase I) etomoxir (8 mg/kg body wt) for 4 wk. Untreated diabetic rats exhibited a reduction in heart rate, left ventricular systolic pressure, and positive and negative rate of pressure development and an increase in end-diastolic pressure. The sarcolemmal Na+-K+-ATPase activity was depressed and was associated with a decrease in maximal density of binding sites (Bmax) value for high-affinity sites for [3H]ouabain, whereas Bmax for low-affinity sites was unaffected. Treatment of diabetic animals with etomoxir partially reversed the depressed cardiac function with the exception of heart rate. The high serum triglyceride and free fatty acid levels were reduced, whereas the levels of glucose, insulin, and 3,3',-5-triiodo-L-thyronine were not affected by etomoxir in diabetic animals. The activity of Na+-K+-ATPase expressed per gram heart weight, but not per milligram sarcolemmal protein, was increased by etomoxir in diabetic animals. Furthermore, Bmax (per g heart wt) for both low-affinity and high-affinity binding sites in control and diabetic animals was increased by etomoxir treatment. Etomoxir treatment also increased the depressed left ventricular weight of diabetic rats and appeared to increase the density of the sarcolemma and transverse tubular system to normalize Na+-K+-ATPase activity. Therefore, a shift in myocardial substrate utilization may represent an important signal for improving the depressed cardiac function and Na+-K+-ATPase activity in diabetic rat hearts with impaired glucose utilization.  相似文献   

15.
16.
The effect of thyroid hormone on the high affinity Ca2+-ATPase activity in rat liver plasma membrane was studied. The high affinity Ca2+-ATPase activity in plasma membrane was activated by 10(-7)-10(-5) M of Ca2+ and was inhibited by 70 microM trifluoperazine. Thyroidectomy of rats was associated with an increase in the activity of high affinity Ca2+-ATPase. The increased enzyme activity was normalized by T4 administration to the animals. On the other hand, Na+-K+-ATPase activity in the membrane was decreased by thyroidectomy and the decreased enzyme activity was normalized by T4 administration. The results suggest that thyroid hormone inhibits the Ca2+ extrusion system by inhibiting calmodulin-independent high affinity Ca2+-ATPase in liver plasma membrane.  相似文献   

17.
The Na+ -K+ -ATPase enzyme is vital in skeletal muscle function. We investigated the effects of acute high-intensity interval exercise, before and following high-intensity training (HIT), on muscle Na+ -K+ -ATPase maximal activity, content, and isoform mRNA expression and protein abundance. Twelve endurance-trained athletes were tested at baseline, pretrain, and after 3 wk of HIT (posttrain), which comprised seven sessions of 8 x 5-min interval cycling at 80% peak power output. Vastus lateralis muscle was biopsied at rest (baseline) and both at rest and immediately postexercise during the first (pretrain) and seventh (posttrain) training sessions. Muscle was analyzed for Na+ -K+ -ATPase maximal activity (3-O-MFPase), content ([3H]ouabain binding), isoform mRNA expression (RT-PCR), and protein abundance (Western blotting). All baseline-to-pretrain measures were stable. Pretrain, acute exercise decreased 3-O-MFPase activity [12.7% (SD 5.1), P < 0.05], increased alpha1, alpha2, and alpha3 mRNA expression (1.4-, 2.8-, and 3.4-fold, respectively, P < 0.05) with unchanged beta-isoform mRNA or protein abundance of any isoform. In resting muscle, HIT increased (P < 0.05) 3-O-MFPase activity by 5.5% (SD 2.9), and alpha3 and beta3 mRNA expression by 3.0- and 0.5-fold, respectively, with unchanged Na+ -K+ -ATPase content or isoform protein abundance. Posttrain, the acute exercise induced decline in 3-O-MFPase activity and increase in alpha1 and alpha3 mRNA each persisted (P < 0.05); the postexercise 3-O-MFPase activity was also higher after HIT (P < 0.05). Thus HIT augmented Na+ -K+ -ATPase maximal activity despite unchanged total content and isoform protein abundance. Elevated Na+ -K+ -ATPase activity postexercise may contribute to reduced fatigue after training. The Na+ -K+ -ATPase mRNA response to interval exercise of increased alpha- but not beta-mRNA was largely preserved posttrain, suggesting a functional role of alpha mRNA upregulation.  相似文献   

18.
19.
20.
To investigate the mechanisms underlying the depressed sarcolemmal (SL) Na(+)-K(+)-ATPase activity in congestive heart failure (CHF), different isoforms and gene expression of Na(+)-K(+)-ATPase were examined in the failing left ventricle (LV) at 8 weeks after myocardial infarction (MI). In view of the increased activity of renin-angiotensin system (RAS) in CHF, these parameters were also studied after 5 weeks of treatment with enalapril (10 mg x kg-1 x day-1), an angiotensin-converting enzyme inhibitor, and losartan (20 mg.kg-1.day-1), an angiotensin II type 1 receptor antagonist, starting at 3 weeks after the coronary ligation in rats. The infarcted animals showed LV dysfunction and depressed SL Na(+)-K(+)-ATPase activity. Protein content and mRNA levels for Na(+)-K(+)-ATPase alpha2 isoform were decreased whereas those for Na(+)-K(+)-ATPase alpha3 isoform were increased in the failing LV. On the other hand, no significant changes were observed in protein content or mRNA levels for Na(+)-K(+)-ATPase alpha1 and beta1 isoforms. The treatment of infarcted animals with enalapril or losartan improved LV function and attenuated the depression in Na(+)-K(+)-ATPase alpha2 isoform as well as the increase in alpha3 isoform, at both the protein and mRNA levels; however, combination therapy with enalapril and losartan did not produce any additive effects. These results provide further evidence that CHF due to MI is associated with remodeling of SL membrane and suggest that the blockade of RAS plays an important role in preventing these alterations in the failing heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号