首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recessive lethal mutations within the bithorax-complex in Drosophila   总被引:7,自引:0,他引:7  
Summary Genetic deficiencies of the bithorax-complex (BX-C) in Drosophila, have been used to recover recessive lethal mutations in this chromosome region following mutagenesis. Complementation analysis separates these lethal mutations into five groups within a smaller deficiency, though to remove the entire BX-C, and into 20 to the left and 4 to the right of the region. Homozygotes for each of only three groups of lethals, Ubx, abdA and AbdB, produce homoeotic segmental transformations in embryos. The functional domains of abdA and AbdB have been defined by changes in the appearance of larval hypodermal structures and of clones in imaginal tissue. The function abdA is required in all the compartments caudal to the anteroposterior border of abdominal segment 1 up to and including the anterior region of abdominal segment 8, whilst AbdB is required in abdominal segments 5 to 9. One allele of AbdB produces a ninth abdominal setal band and structures characteristic of head segments posterior to A8. Rare adult survivors hemizygous for an AbdB allele have eight abdominal segments in both sexes, and lack genitalia in females. Our findings are discussed in the context of the organisation of genetic functions within the BX-C.  相似文献   

2.
Separation of the imaginal and larval developmental pathways in Drosophila occurs early in embryogenesis, resulting in the formation of imaginal discs and abdominal histoblast nests along the larval body wall. The dorsal and ventral histoblast nests within the first abdominal (A1) segment are shown not to be segmentally homologous with the metathoracic (T3) haltere and leg discs, respectively, since they occur at distinct dorso-ventral locations during normal development and can be found together within the same segment in mutants of the Bithorax complex (BX-C) where T3 is transformed towards A2-A4 or A1 towards T3. Several patterning abnormalities are also observed in BX-C mutants. A ventral shift in the A1 ventral nest occurs in partially transformed larvae harboring weak bithoraxoid (bxd) mutations; in more fully transformed larvae (Ubx1/Df) both the anterior dorsal and ventral nests are lost and instead a dorsal and ventral disc bud are formed. Dorso-ventral inversions in the pattern of the ventral nest occur in a random fashion throughout A1-A7 in response to an increase or decrease in the gene dosage of the BX-C. In gain-of-function mutants anterior dorsal histoblast cells form in the homologous anterior as well as the nonhomologous posterior portion of T3. Based on these and other findings it appears that the Ultrabithorax (Ubx) locus (and possibly abdominal-A and Abdominal-B) is required to steer ectodermal cells toward an imaginal histoblast rather than a larval cell fate at specific regions within the first abdominal segment.  相似文献   

3.
Summary The segmental organisation of the tail region in the embryo of Drosophila melanogaster, which is defined here as the epidermal region posterior to the boundary between abdominal segments A7 and A8, has been investigated by means of ultraviolet (UV) laser fate-mapping and phenotypic analysis of embryonic mutants that alter the segmental pattern of the larval cuticle. Wild-type embryos were irradiated in the presumptive tail region with a UV- laser microbeam of 20 m diameter at the blastoderm stage. The ensuing defects were scored in the cuticle pattern of the tail region of the first-instar larva, which is described in detail in this paper. The spatial distribution of defect frequencies was used to construct a blastoderm fate-map of the cuticle structures of the larval tail region. The segmental origin of the larval tail structures was inferred from the phenotypic analysis of segmentation and homoeotic mutants, which revealed pattern repetition throughout the embryonic tail region corresponding to four segment anlagen, A8 to A11, and a non-segmental telson. These data enabled the transformation of the blastoderm fate-map of cuticle structures into a map of tail segment anlagen. The tail anlage occupies about 10% of the egg length (EL), bounded by segment A7 anteriorly at 20% EL and by the proctodaeum posteriorly at 10% EL, as measured from the posterior pole. The anlagen of segments A8 and A9 appear to be narrow dorso-ventral strips of blastoderm cells similar to the anlagen of the trunk segments, whereas the anlagen of A10 and A11 are smaller and produce fewer pattern elements. The telson is represented in the cuticle by the tuft which derives from a very dorsal posterior position. The antero-posterior axis of the entire tail anlage appears curved upward posteriorly. Differences in the mode of development between tail and trunk segments are discussed, as are similarities of larval and imaginal tail development in Drosophila. Comparison with tail development in other insects suggests that, during evolution, the transition from semi-long-germ to long-germ development modified the organisation of the tail region without affecting its primary subdivision into metameric units.  相似文献   

4.
The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.  相似文献   

5.
In both sexes, the Drosophila genital disc comprises three segmental primordia: the female genital primordium derived from segment A8, the male genital primordium derived from segment A9 and the anal primordium derived from segments A10-11. Each segmental primordium has an anterior (A) and a posterior (P) compartment, the P cells of the three segments being contiguous at the lateral edges of the disc. We show that Hedgehog (Hh) expressed in the P compartment differentially signals A cells at the AP compartment border and A cells at the segmental border. As in the wing imaginal disc, cell lineage restriction of the AP compartment border is defined by Hh signalling. There is also a lineage restriction barrier at the segmental borders, even though the P compartment cells of the three segments converge in the lateral areas of the disc. Lineage restriction between segments A9 and A10-11 depends on factors other than the Hh, En and Hox genes. The segmental borders, however, can be permeable to some morphogenetic signals. Furthermore, cell ablation experiments show that the presence of all primordia (either the anal or the genital primordium) during development are required for normal development of genital disc. Collectively, these findings suggest that interaction between segmental primordia is required for the normal development of the genital disc.  相似文献   

6.
Homeotic gene function in the muscles of Drosophila larvae   总被引:10,自引:6,他引:4       下载免费PDF全文
Hooper JE 《The EMBO journal》1986,5(9):2321-2329
The segmental musculature of Drosophila melanogaster larvae consists of 24-30 muscles per segment. Unique patterns of muscles are found in the three thoracic segments and the first and last abdominal segments; the remaining abdominal segments share the same pattern. Mutations in Ultrabithorax (Ubx) cause partial transformation of the muscle pattern of larval abdominal segments towards metathorax. The muscles of the thorax are not affected. In the first two abdominal segments the changes include the loss of at least 11 `abdominal' muscles and the gain of 11 `thoracic' muscles. Less extensive transformations are seen in more posterior abdominal segments. Anterobithorax, bithorax, postbithorax and bithoraxoid mutations also induce transformations of the larval musculature. Each allelic group affects a domain that is a subset of the entire Ubx domain but these domains are not restricted to compartments or segments and may extend through as many as five segments. In the muscles the segmental distribution of Ubx antigen correlates with the segments affected by Ubx mutations. The different domains of Ubx in mesoderm and ectoderm argue that the segmental diversity of the muscle pattern is not simply induced by the overlying epidermis and that Ubx function in the mesoderm is required for the correct development of abdominal segments.  相似文献   

7.
Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm’s canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design and delivery of improved treatments for glaucoma patients.  相似文献   

8.

Background  

The embryonic and larval peripheral nervous system of Drosophila melanogaster is extensively studied as a very powerful model of developmental biology. One main advantage of this system is the ability to study the origin and development of individual sensory cells. However, there remain several discrepancies regarding the organization of sensory organs in each abdominal segment A1-A7.  相似文献   

9.
Abstract. After 8–10 segments of posterior ventral nerve cord were ablated in Lumbriculus variegatus , touch-evoked locomotor responses were evident both in segments anterior and posterior to the ablation site. However, responses in these two regions were independent and uncoupled. During recovery, four outcomes were observed at the ablation site: (Group 1) recovery of normal functions with no growth of new segments; (Group 2) formation of a laterally protruding, multi-segmented, ectopic head; (Group 3) formation of a laterally protruding, amorphous, and multi-segmented outgrowth; and (Group 4) segmental autotomy. In Groups 1 and 2, touch-evoked swimming and body reversal were studied. In addition, sensory fields and conduction properties of giant nerve fibers were examined near the ablation site. In some Group 1 worms, clear-cut behavioral and electrical signs of recovery and reconnection were seen by 3 d after ablation. By 8 d, all worms had recovered and exhibited response patterns comparable to those of normal worms. In Group 2 worms, with an ectopic head, segments posterior to the ablation (together with those in the ectopic head), exhibited touch-evoked swimming and body reversal responses resembling those of a complete worm. Segments anterior to the ectopic head were independently capable of locomotor responses. Medial and lateral giant fiber sensory fields in worms with ectopic heads reflected a pattern expected for two worms. Thus, through apparent morphallactic reorganization, a medial giant fiber sensory field emerged which included the ectopic head and 10–15 adjacent posterior segments. In contrast, electrical recordings showed longitudinal through-conduction of giant fiber spikes, across the ablation site. Histological examination revealed that the giant nerve fibers in the ectopic head were complexly interconnected with those in the main body axis.  相似文献   

10.
Drosophila uses different olfactory organs at different developmental stages. The larval and adult olfactory organs are morphologically dissimilar and have different developmental origins: the antenno-maxillary complex (AMC), which houses the larval olfactory organ, is histolyzed during metamorphosis; the third antennal segment--the principal adult olfactory organ--derives from an imaginal disc. A screen for genes expressed in both larval and adult olfactory organs, but in relatively few other tissues, has been carried out. Seven enhancer trap lines showing reporter gene expression in both the larval AMC and in certain subsets of the adult antenna are described. The antennal staining pattern of one line shows a striking change over the first few days of adult life, with a time course comparable to that of the development of sexual maturity. A pronounced sexual dimorphism in antennal staining pattern is seen in another line. Some staining patterns resemble the patterns of certain classes of antennal sensilla; others show expression restricted to only a small number of cells. Some lines also show expression associated with other chemosensory organs at either the larval or adult stage, including the maxillary palps, labellum, and anterior wing margin. One line, which also shows staining in the male reproductive tract, is male sterile. The significance of these results is considered in terms of (1) the molecular organization of the olfactory system; (2) the recruitment of olfactory genes for use in two developmental contexts; (3) the sharing of genes among different sensory modalities; (4) the role of olfaction in sexual behavior; and (5) posteclosional changes in the olfactory system.  相似文献   

11.
Respecification of vertebral identities by retinoic acid.   总被引:17,自引:0,他引:17  
  相似文献   

12.
Patterns of gene expression have been well documented during embryogenesis for the Drosophila melanogaster trunk segments. The same is not the case for the terminal segments. Here, gene expression patterns are followed during embryogenesis in the caudal segments (A8-A10 and the anal plate), with special attention paid to the novel regulation of engrailed (en). Chosen for this study are the pair-rule genes even-skipped (eve), fushi tarazu (ftz), runt (run), hairy (h), paired (prd) and odd-skipped (odd), and the segment polarity gene (en). The results demonstrate a progressive and coupled translocation of gene expression distally for all genes studied, suggesting that the most posterior segments are determined later than trunk segments.  相似文献   

13.
 Cirripedia (barnacles) constitute a crustacean monophyletic taxon which is very well defined by several synapomorphies. In particular, all cirripedes are composed of six thoracic segments, but are devoid of any complete abdominal segment. This body plan is preserved in the adult in non-parasitic groups, while the parasitic rhizocephalan cirripedes completely lose arthropodian segmentation at the adult stage. These traits make them a particularly favourable model for studying the formation and maintenance of segmental identity. For the above reasons, it seemed worthwhile to look at the segmentation gene engrailed in a cirripede. A complete engrailed.a cDNA was isolated from larvae of the rhizocephalan cirripede Sacculina carcini. Its expression was monitored during larval development by use of the monoclonal antibody MAb4D9 directed against the Drosophila homologous proteins. The Sacculina engrailed.a gene is expressed during the second and third larval stages in stripes within a posterior area corresponding to the presumptive trunk segments. Surprisingly, these stripes appear in a posterior to anterior sequence. Six engrailed.a stripes characterize the thoracic segments of the cirripedean ground plan. Received: 18 June 1998 / Accepted: 24 October 1998  相似文献   

14.
A three-phase model of arthropod segmentation   总被引:3,自引:0,他引:3  
Molecular and morphological evidence (expression patterns of pair-rule genes and segmental position of the genital openings and other segmental markers) suggest that the segmental units of the arthropod body are specified, in early ontogeny, by three spatially and/or temporally distinct mechanisms and do not appear in a strict antero-posterior sequence. A first anterior set of indivisible segments (naupliar segments, possibly three in all arthropods) is followed by a set of more caudal (post-naupliar) primary units (eosegments, possibly ten in all arthropods) which then undergo a process of secondary segmentation, thus giving rise to a higher number of definitive segments (merosegments). The number of merosegments deriving from each eosegment is characteristic of the different arthropod clades and is mostly stable at the level of the traditional arthropodan classes or subclasses. All their segmentation patterns, however, including those found in the segmental organisation of highly segmented forms (such as centipedes and millipedes, notostracan, lipostracan and anostracan crustaceans, and trilobites) are reducible to the basic groundplan with three naupliar and ten postnaupliar segments. These basic units of arthropod segmentation may also have an equivalent in other Ecdysozoa, despite the lack of any segmentation (nematodes) or, at least, of an overt segmentation (kinorhynchs).  相似文献   

15.
Drosophila melangaster females were centrifuged for 6 hr at 670g. Eggs collected from centrifuged flies frequently developed into abnormal embryos and larvae which were unable to hatch. A typical abnormality was the fusion of segments, identified by the cuticle hairs which mark larval segmental boundaries. Malformation of segments occurred most frequently in the middle region of the larva (segments 6–9 of the 12 larval segments). The induction of abnormalities is stage specific. They occurred in embryos developing from eggs laid up to 33 hr after centrifugation; eggs laid later than 33 hr (stage 7, King, 1970) showed no abnormalities.  相似文献   

16.
A new cave‐dwelling loach of the genus Triplophysa, T. xichouensis, is described from an outlet of a subterranean river in Xisa Town, Xichou County, Yunnan Province, China. It can be distinguished from its congeners by the following characters: dorsal‐fin rays iii, 8; anal‐fin rays ii, 6; pectoral‐fin rays i, 9 or 10; pelvic‐fin rays i, 5 or 6; branched caudal‐fin rays 16(8+8); eyes highly degenerated to a very tiny black dot; dorsal‐fin origin closer to snout tip than to caudal‐fin base and anterior to vertical line of pelvic‐fin origin; pectoral fin length about two‐thirds the distance between pectoral‐fin origin to pelvic‐fin origin; caudal peduncle slender, its length about three times its depth; caudal fin emarginate; body smooth and scaleless; lateral line complete and straight; anterior chamber of air bladder wrapped in dumbbell‐shaped bony capsule and the posterior one well developed, long, oval; intestine short, bending in zigzag shape behind stomach. A key for the cave‐dwelling species of Triplophysa is provided. urn:lsid:zoobank.org:pub:9162FFB1‐7911‐47C3‐AE50‐6A00E9590327  相似文献   

17.
Transneuronal tracing with pseudorabies virus (PRV) was used to identify sites in the central nervous system involved in the neural control of colon function. PRV-immunoreactive (IR) cells were primarily localized to the caudal lumbosacral (L6-S1) and caudal thoracic-rostral lumbar (T13-L1) spinal segments with the distribution varying according to survival time (72-96 h). In the lumbosacral spinal cord at all time points examined, significantly (PА.005) greater numbers of PRV-IR cells were present in the region of the sacral parasympathetic nucleus (SPN) of the S1 spinal segment compared to that of the L6 segment. These studies also revealed morphologically distinct cell types with a differential distribution (probably interneurons and preganglionic parasympathetic neurons) in the region of the SPN in the L6-S1 spinal segments following colon inoculation. PRV-labeled neurons were located at various levels of the neuraxis and at many sites had a distribution similar to that following injection of virus to other urogenital organs. However, some unique sites in the dorsal motor nucleus of the vagus, nucleus of the solitary tract, nucleus ambiguus and area postrema were also identified. To determine if labeling in these caudal medullary sites was mediated by spinal or vagal pathways, the colon was inoculated with PRV in animals with a complete spinal cord (T8) transection (5-7 days prior). Following spinal transection, PRV-infected cells were detected in the same caudal medullary regions; however, labeling in other regions (e.g., Barrington's nucleus) was eliminated or significantly reduced. These studies have yielded several novel observations concerning the central neural control of colonic function: (1) the preganglionic efferent and primary afferent innervation of the colon arises primarily from the S1 spinal segment; (2) the distribution of PRV-infected neurons in the central nervous system following colon inoculation was similar to that following PRV inoculation of other urogenital organs; (3) Barrington's nucleus, which has been identified previously as the pontine micturition center, may have a role in colonic function; and (4) PRV infection in Barrington's nucleus following colon inoculation is mediated by bulbospinal pathways whereas labeling in caudal medullary regions is mediated, at least in part, by vagal pathways.  相似文献   

18.
19.
1. We have analysed the development of the larval PNS of Drosophila, with the aim of understanding the genetic programme that underlies this development. 2. The achaete-scute gene complex (AS-C), which is required for the development of the adult PNS, is also necessary for the larval PNS. The analysis of different AS-C lesions shows that the larval PNS results from the superimposition of two independent subpatterns, each of which depends on one AS-C gene. 3. The analysis of the two subpatterns reveals hidden homologies between the very different arrangements of sense organs observed on different segments, suggesting that the initial pattern is the same in all segments and is later modified in the different segments. 4. The early arrangement of sensory mother cells can be visualised in a special transgenic line, A37. In this line the initial repetitive pattern inferred above can be directly observed. Furthermore this line makes it possible to decide whether a given mutation acts on the very early steps of the PNS development (determination) or at later stages (differentiation). 5. The line A37 has been used to show that mutations that reduce the PNS such as AS-C- or da- alter the very first steps of the process, while mutations which result in a hypertrophied PNS such as N seem to alter a subsequent step. We end up with an overview of the genetic operations that generate the arrangement of sense organs and sensory neurons.  相似文献   

20.
I. Hasenfuss 《Zoomorphology》1997,117(3):155-164
 The patterns of scolopal organs and their innervation were studied by the methylene blue method in larvae, pupae and adults of an Yponomeuta species (Yponomeutidae) and of tympanate adult representatives of the Noctuoidea, Geometridae, Drepanidae and Pyraloidea. The studies were focused mainly on the mesothorax, the metathorax and some anterior abdominal segments. In the abdominal tympanal organs of Geometridae, Drepanidae and Pyraloidea, the auditory scolopidia are homologous with the lateral scolopal organs of the first abdominal segment; however, the hearing organs as such evolved independently in the three taxa. The studies confirm that the tympanal organ in the Noctuoidea is derived from the caudal dorsolateral region of the metathorax including its dorsal scolopal organ and the B-cell. The adult scolopal organs are present already in the larvae and are maintained nearly unchanged during metamorphosis to the adult. Only in the Noctuoidea are the three sensory cells of the larval scolopal organs, which become part of the tympanal organs, reduced to one (in Notodontidae) or two (in other Noctuoidea) during metamorphosis. A hypothetical scenario of the evolution of the tympanal organs is outlined. Accepted: 12 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号