首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A range of species of four mixed bacterial cultures was studied by molecular systematics methods with the use of 16S rRNA genes. The cultures had been developed for application in minireactors, to degrade volatile organic compounds (VOCs): ethyl benzene, m-xylene, styrene, and o-xylene. A sample of 30 plasmid rDNA clones was obtained for each of the mixed cultures. The clones were analyzed by RFLP according to two restriction sites. Major variants of the 16S-rDNA sequences, corresponding to the most abundant species, were determined for each association. Sequencing of four clones of predominant 16S-rDNAs showed that the culture consuming ethyl benzene was dominated by Pseudomonas fluorescens; o-xylene, by Achromobacter xylosoxydans; styrene, by Pseudomonas veronii; and m-xylene, by Delftia acidovorans. Minor components of all four cultures were generally similar. They included species of the genera Sphingobacter, Rhizobium, Mesorhizobium, Pedobacter, and Paenibacillus. Sampling sequencing of genes for 16S rRNA cloned from total genomic DNA allowed quantitative determination of the composition of actual bacterial associations consuming VOCs in minireactors.  相似文献   

2.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C12O) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C23O) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.__________Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 3, 2005, pp. 298–302.Original Russian Text Copyright © 2005 by Khomenkov, Shevelev, Zhukov, Kurlovich, Zagustina, Popov.  相似文献   

3.
Genes for catechol 1,2- and 2,3-dioxygenases were cloned. These enzymes hold important positions in the ortho and meta pathways of the metabolism of aromatic carbons by microbial associations that consume the following volatile organic compounds in pilot minireactors: toluene, styrene, ethyl benzene, o-xylene, m-xylene, and naphthalene. Genes of both pathways were found in an association consuming m-xylene; only genes of the ortho pathway were found in associations consuming o-xylene, styrene, and ethyl benzene, and only genes of the meta pathway were found in associations consuming naphthalene and toluene. Genes of the ortho pathway (C120) cloned from associations consuming o-xylene and ethyl benzene were similar to corresponding genes located on the pND6 plasmid of Pseudomonas putida. Genes of the ortho pathway from associations consuming o-xylene and m-xylene were similar to chromosomal genes of P. putida. Genes of the meta pathway (C230) from associations consuming toluene and naphthalene were similar to corresponding genes formerly found in plasmids pWWO and pTOL.  相似文献   

4.
In the course of study on the utilization of methyl-substituents of mono-cyclic aromatic hydrocarbons by Pseudomonas aeruginosa S668B2, some organic acids and phenolic compounds were found to be produced in culture broth.

Strain S668B2 was capable of producing ultraviolet absorbing and fluorescent substances from m-xylene. These substances were isolated in the form of crystal and identified as 3-methyl salicylic acid and m-toluic acid.

Strain S668B2 also produced ultraviolet absorbing and fluorescent substances from pseudocumene (1,2,4-trimethyl benzene). These substances were isolated in the crystalline form and identified as 3,4-dimethyl benzoic acid and 3,4-dimethyl phenol.

Strain S668B″ did not attack o-xylene. Under the similar conditions Pseudomonas desmolytica S449B3, which produced a large amount of cumic acid from p-cymene, did not oxidize o-xylene, but grew on p-xylene, m-xylene and 1,2,4-trimethyl benzene.

None out of 364 soil samples gave microorganisms which utilize o-xylene as a sole carbon source.  相似文献   

5.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

6.
A co-culture of two Pseudomonas putida isolates was enriched from sediment on a mixture of benzene, toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene. The co-culture readily degraded each of the compounds present. Benzene, toluene, and ethylbenzene were used as growth substrates by one isolate, while toluene, m-xylene, and p-xylene were used as growth substrates by the other. Neither isolate could grow on o-xylene, but it was removed in the presence of the other compounds presumably by co-metabolism. The findings presented here support other reports in which constructed communities were effectively used to degrade blends of between two and four of the components of BTEX. However, here the co-culture of two P. putida isolates effectively degraded a complete BTEX stream containing all six of the components. Received: 4 September 2001 / Accepted: 19 October 2001  相似文献   

7.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

8.
Soils contaminated with o-xylene were more difficult to bioremediate than those contaminated with other BTEX hydrocarbons (benzene, toluene, ethylbenzene, m-xylene and p-xylene). In order to identify microorganisms responsible for o-xylene degradation in soil, microbial community structure analyses were carried out with two soil samples in the presence of o-xylene and mineral nutrients. In two different soil samples, Rhodococcus opacus became abundant. We were also able to isolate o-xylene degrading Rhodococcus species from these soil samples. A primer set was developed to specifically detect a cluster of this Rhodococcus group including isolated Rhodococcus strains, Rhodococcus opacus and Rhodococcus koreensis. The growth of this bacterial group in an o-xylene-contaminated soil was followed by competitive PCR (cPCR). The decrease in o-xylene clearly paralleled the growth of the Rhodococcus group.  相似文献   

9.
A p-xylene-degrading, sulfate-reducing enrichment culture was characterized by analyzing the response of its members to changes in the available substrate. The culture was inoculated into media containing other substrates, resulting in the establishment of benzoate-, acetate-, and lactate-utilizing enrichment cultures. PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the enriched cultures targeting 16S rRNA genes showed quite simple band patterns. The predominant band from the benzoate-utilizing enrichment culture was identical to that from the original enrichment culture utilizing p-xylene. A single, dominant DGGE band was observed in common from the acetate- and lactate-utilizing enrichment cultures. A novel sulfate-reducing bacterium, strain PL12, was isolated from the lactate-utilizing enrichment culture. The 16S rRNA gene sequence of strain PL12 was identical to that of the dominant DGGE band in the acetate- and lactate-utilizing enrichment cultures and distinct from the dominant sequences in the original p-xylene-degrading and benzoate-utilizing enrichment cultures. Phylogenetic analysis of the 16S rRNA gene sequences showed that the isolate belonged to the family Desulfobacteraceae in the class Deltaproteobacteria. The isolated strain PL12 could utilize n-hexane and n-decane as substrates, but could not utilize benzoate, p-xylene and other aromatic hydrocarbons. These results suggest that the p-xylene degradation observed in the original enrichment culture was performed by the dominant bacterium corresponding to DGGE band pXy-K-13 (Nakagawa et al. 2008). The novel strain PL12 might have been utilizing metabolites of p-xylene.  相似文献   

10.
The inhibitory effect of creosote compounds on the aerobic degradation of benzene was studied in microcosm experiments. A total removal of benzene was observed after twelve days of incubation in microcosms where no inhibition was observed. Thiophene and benzothiophene, two heterocyclic aromatic compounds containing sulfur (S-compounds), had a significant inhibitory effect on the degradation of benzene, but also an inhibitory effect of benzofuran (an O-compound) and 1-methylpyrrole (a N-compound) could be observed, although the effect was weaker. The NSO-compounds also had an inhibitory effect on the degradation of p-xylene, o-xylene, and naphthalene, while they only had a weak influence on the degradation of 1-methylnaphthalene, o-cresol and 2,4-dimethylphenol. The phenolic compounds seemed to have a weak stimulating effect on the degradation of benzene whereas the monoaromatic hydrocarbons and the naphthalenes had no significant influence on the benzene degradation. The inhibitory effect of the NSO-compounds on the aerobic degradation of benzene could be identified as three different phenomena. The lag phase increased, the degradation rate decreased, and a residual concentration of benzene was observed in microcosms when NSO-compounds were present. The results show that NSO-compounds can have a potential inhibitory effect on the degradation of many creosote compounds, and that inhibitory effects in mixtures can be important for the degradation of different compounds.Abbreviations ben benzene - bf benzofuran - bt benzothiophene - dmp 2,4-dimethylphenol - GC gas chromatograph - ind indole - mnap 1-methylnaphthalene - MAHs monoaromatic hydrocarbons - mp 1-methylpyrrole - nap naphthalene - NSO-compounds heterocyclic aromatic compounds containing nitrogen, sulphur or oxygen - o-cre o-cresol - o-xyl o-xylene - PAHs polyaromatic hydrocarbons - phe phenol - p-xyl p-xylene - pyr pyrrole - thi thiophene - qui quinoline  相似文献   

11.
The primary objective of this study was to evaluate the impact of substrate interactions on the biotransformation rates and mineralization potentials of gasoline monoaromatics and methyl tert-butyl ether (MTBE), compounds that commonly co-exist in groundwater contaminant plumes. A mixed culture was derived from gasoline-contaminated aquifer material using toluene as the enrichment substrate. Two pure cultures, Rhodococcus sp. RR1 and RR2, were isolated from the mixed culture. The three toluene-grown cultures were shown to biotransform all of the six BTEX compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene, and p-xylene), both individually and in mixtures, over a broad range of concentrations. The mixed culture was shown to degrade all of the BTEX compounds to 14CO2, while the two isolates mineralized BTE(m-/p-)X, but biotransformed o-xylene without production of carbon dioxide. Studies to evaluate substrate interactions caused by the concurrent presence of multiple BTEX compounds during their biodegradation revealed a number of patterns,including competitive inhibition and cometabolism. Ethylbenzene was shown to significantly inhibit BTX degradation in mixtures. MTBE was not biodegraded by any of the three toluene-grown cultures over a range of MTBE concentrations. Furthermore, the presence of MTBE at concentrations of 2 to 100?mg/L had no effect on BTEX biotransformation rates.  相似文献   

12.
Benzene, toluene, ethylbenzene and xylene (BTEX) substrate interactions for a mesophilic (25°C) and thermophilic (50°C) toluene-acclimatized composted pine bark biofilter were investigated. Toluene, benzene, ethylbenzene, o-xylene, m-xylene and p-xylene removal efficiencies, both individually and in paired mixtures with toluene (1:1 ratio), were determined at a total loading rate of 18.1 g m–3 h–1 and retention time ranges of 0.5–3.0 min and 0.6–3.8 min for mesophilic and thermophilic biofilters, respectively. Overall, toluene degradation rates under mesophilic conditions were superior to degradation rates of individual BEX compounds. With the exception of p-xylene, higher removal efficiencies were achieved for individual BEX compounds compared to toluene under thermophilic conditions. Overall BEX compound degradation under mesophilic conditions was ranked as ethylbenzene >benzene >o-xylene >m-xylene >p-xylene. Under thermophilic conditions overall BEX compound degradation was ranked as benzene >o-xylene >ethylbenzene >m-xylene >p-xylene. With the exception of o-xylene, the presence of toluene in paired mixtures with BEX compounds resulted in enhanced removal efficiencies of BEX compounds, under both mesophilic and thermophilic conditions. A substrate interaction index was calculated to compare removal efficiencies at a retention time of 0.8 min (50 s). A reduction in toluene removal efficiencies (negative interaction) in the presence of individual BEX compounds was observed under mesophilic conditions, while enhanced toluene removal efficiency was achieved in the presence of other BEX compounds, with the exception of p-xylene under thermophilic conditions.  相似文献   

13.
Nakagawa T  Sato S  Fukui M 《Biodegradation》2008,19(6):909-913
Anaerobic degradation of p-xylene was studied with sulfate-reducing enrichment culture. The enrichment culture was established with sediment-free sulfate-reducing consortium on crude oil. The crude oil-degrading consortium prepared with marine sediment revealed that toluene, and xylenes among the fraction of alkylbenzene in the crude oil were consumed during the incubation. The PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene for the p-xylene degrading sulfate-reducing enrichment culture showed the presence of the single dominant DGGE band pXy-K-13 coupled with p-xylene consumption and sulfide production. Sequence analysis of the DGGE band revealed a close relationship between DGGE band pXy-K-13 and the previously described marine sulfate-reducing strain oXyS1 (similarity value, 99%), which grow anaerobically with o-xylene. These results suggest that microorganism corresponding to pXy-K-13 is an important sulfate-reducing bacterium to degrade p-xylene in the enrichment culture.  相似文献   

14.
Biodegradation of volatile organic compounds by five fungal species   总被引:4,自引:0,他引:4  
Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids ( n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxiiproduced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application.  相似文献   

15.
Pseudomonas stutzeri OX1 is able to grow ono-xylene but is unable to grow onm-xylene andp-xylene, which are partially metabolized through theo-xylene degradative pathway leading to the formation of dimethylphenols toxic to OX1.P. stutzeri spontaneous mutants able to grow onm-xylene andp-xylene have been isolated. These mutants soon lose the ability to grow ono-xylene. Data from HPLC analyses and from induction studies suggest that in these mutantsm-xylene andp-xylene could be metabolized through the oxidation of a methyl substituent.P. stutzeri chromosomal DNA is shown to share homology with pWW0 catabolic genes. In the mutant strains the region homologous to pWW0 upper pathway genes has undergone a genomic rearrangement.Abbreviations BADH benzylalcohol dehydrogenase - cat catechol - C23O catechol 2,3-dioxygenase - 2,3-,3,4-,2,4-,2,6-,3,5-2,5-DMP 2,3-,3,4-,2,4-,2,6-,3,5-,2,5-dimethylphenol - 2-MBOH 2-methylbenzyl alcohol - 3-MBOH 3-methylbenzyl alcohol - 4-MBOH 4-methylbenzyl alcohol - m-,p-tol m-,p-toluate - o-,m-,p-xyl o-,m-,p-xylene  相似文献   

16.
Degradation of BTEX compounds in liquid media and in peat biofilters   总被引:1,自引:0,他引:1  
A mixed culture, enriched from Sphagnum peat moss, contaminated with gasoline vapours, degraded individual and mixed components of BTEX (benzene, toluene, ethylbenzene, xylene). Complete degradation of radiolabelled toluene by the mixed culture was observed in mineralisation studies. Individual isolates from a mixed culture containingPseudomonas maltophilia, P. testosteroni andP. putida biotype A exhibited contrasting BTEX degradation patterns. WhileP. putida biotype A degraded all of the BTEX compounds,P. maltophilia andP. testosteroni, appeared unable to degrade benzene and xylenes, respectively. When the peat, inoculated with the mixed culture, was used as a biofilter (6.2 cm diameter ×93 cm length) for degradation of toluene and ethylbenzene vapours, percentage removal efficiencies were 99 and 85, respectively. When the capacity of the biofilter to degrade a combination of BTEX compounds was evaluated, percentage removal efficiencies for toluene, ethylbenzene,p-xylene,o-xylene and benzene were 99, 85, 82, 80 and 78, respectively. The importance of using the mixed culture as an inoculum in the biofilter was established and also the relationship between contaminated vapour flow rate and percentage removal efficiency.  相似文献   

17.
Shim H  Hwang B  Lee SS  Kong SH 《Biodegradation》2005,16(4):319-327
Pseudomonas putida and Pseudomonas fluorescens present as a coculture were studied for their abilities to degrade benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) under various growth conditions. The coculture effectively degraded various concentrations of BTEX as sole carbon sources. However, all BTEX compounds showed substrate inhibition to the bacteria, in terms of specific growth, degradation rate, and cell net yield. Cell growth was completely inhibited at 500mgl–1 of benzene, 600mgl–1 of o-xylene, and 1000mgl–1 of toluene. Without aeration, aerobic biodegradation of BTEX required additional oxygen provided as hydrogen peroxide in the medium. Under hypoxic conditions, however, nitrate could be used as an alternative electron acceptor for BTEX biodegradation when oxygen was limited and denitrification took place in the culture. The carbon mass balance study confirmed that benzene and toluene were completely mineralized to CO2 and H2O without producing any identifiable intermediate metabolites.  相似文献   

18.
The inhibiting effect of 14 typical creosote compounds on the aerobic degradation of toluene was studied in batch experiments. Four NSO-compounds (pyrrole, 1-methylpyrrole, thiophene, and benzofuran) strongly inhibited the degradation of toluene. When the NSO-compounds were present together with toluene, little or no degradation of toluene was observed during 16 days of incubation, compared with a total removal of toluene within 4 days when the four compounds were absent. Indole (an N-compound) and three phenolic compounds (phenol, o-cresol, and 2,4-dimethylphenol) also inhibited the degradation of toluene, though the effect was much weaker that of the four NSO-compounds. O-xylene, p-xylene, naphthalene and 1-methylnaphthalene seemed to stimulate the degradation even though the influence was very weak. No effects of benzothiophene (an S-compound) and quinoline (an N-compound) were observed. Benzofuran (an O-compound) was identified as the compound that most inhibited the degradation of toluene. An effect could be detected even at low concentrations (40 g/l).Abbreviations bf benzofuran - bt benzothiophene - dmp 2,4-dimethylphenol - GC gas chromatograph - ind indole - mnap 1-methylnaphthalene - MAH monoaromatic hydrocarbons - mpyr 1-methylpyrrole - nap naphthalene - o-cre o-cresol - o-xyl o-xylene - phe phenol - pyr pyrrole - p-xyl p-xylene - tol toluene - thi thiophene - qui quinoline  相似文献   

19.
The pathways for degradation of aromatic hydrocarbons are constantly modified by a variety of genetic mechanisms. Genetic studies carried out with Pseudomonas stutzeri OX1 suggested that the tou operon coding for toluene o-xylene monooxygenase (ToMO) was recently recruited into a preexisting pathway that already possessed the ph operon coding for phenol hydroxylase (PH). This apparently resulted in a redundancy of enzymatic activities, because both enzymes are able to hydroxylate (methyl)benzenes to (methyl)catechols via the intermediate production of (methyl)phenols. We investigated the kinetics and regioselectivity of toluene and o-xylene oxidation using Escherichia coli cells expressing ToMO and PH complexes. Our data indicate that in the recombinant system the enzymes act sequentially and that their catalytic efficiency and regioselectivity optimize the degradation of toluene and o-xylene, both of which are growth substrates. The main product of toluene oxidation by ToMO is p-cresol, the best substrate for PH, which catalyzes its transformation to 4-methylcatechol. The sequential action of the two enzymes on o-xylene leads, via the intermediate 3,4-dimethylphenol, to the exclusive production of 3,4-dimethylcatechol, the only dimethylcatechol isomer that can serve as a carbon and energy source after further metabolic processing. Moreover, our data strongly support a metabolic explanation for the acquisition of the ToMO operon by P. stutzeri OX1. It is possible that using the two enzymes in a concerted fashion confers on the strain a selective advantage based on the ability of the microorganism to optimize the efficiency of the use of nonhydroxylated aromatic hydrocarbons, such as benzene, toluene, and o-xylene.  相似文献   

20.
Diversity of bacterial community in freshwater of Woopo wetland   总被引:1,自引:0,他引:1  
Diversity of bacterial community in water layer of Woopo wetland was investigated. Cultivable bacterial strains were isolated by the standard dilution plating technique and culture-independent 16S rRNA gene clones were obtained directly from DNA extracts of a water sample. Amplified rDNA restriction analysis (ARDRA) was applied onto both of the isolates and 16S rRNA gene clones. Rarefaction curves, coverage rate and diversity indices of ARDRA patterns were calculated. Representative isolates and clones of all the single isolate/clone phylotype were partially sequenced and analyzed phylogenetically. Sixty-four and 125 phylotypes were obtained from 203 bacterial isolates and 235 culture-independent 16S rRNA gene clones, respectively. Bacterial isolates were composed of 4 phyla, of which Firmicutes (49.8%) and Actinobacteria (32.0%) were predominant. Isolates were affiliated with 58 species. Culture-independent 16S rRNA gene clones were composed of 8 phyla, of which Proteobacteria (62.2%), Actinobacteria (15.5%), and Bacteroidetes (13.7%) were predominant. Diversity of 16S rRNA gene clones originated from cultivation-independent DNA extracts was higher than that of isolated bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号