首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most lipid emulsions for parenteral feeding of premature infants are based on long-chain triacylglycerols (LCTs), but inclusion of medium-chain triacylglycerols (MCTs) might provide a more readily oxidizable energy source. The influence of these emulsions on fatty acid composition and metabolism was studied in 12 premature neonates, who were randomly assigned to an LCT emulsion (control) or an emulsion with a mixture of MCT and LCT (1:1). On study day 7, all infants received [13C]linoleic (LA) and [13C]alpha-linolenic acid (ALA) tracers orally. Plasma phospholipid (PL) and triacylglycerol (TG) fatty acid composition and 13C enrichments of plasma PL fatty acids were determined on day 8. After 8 days of lipid infusion, plasma TGs in the MCT/LCT group had higher contents of C8:0 (0.50 +/- 0.60% vs. 0.10 +/- 0.12%; means +/- SD) and C10:0 (0.66 +/- 0.51% vs. 0.15 +/- 0.17%) than controls. LA content of plasma PLs was slightly lower in the MCT/LCT group (16.47 +/- 1.16% vs. 18.57 +/- 2.09%), whereas long-chain polyunsaturated derivatives (LC-PUFAs) of LA and ALA tended to be higher. The tracer distributions between precursors and products (LC-PUFAs) were not significantly different between groups. Both lipid emulsions achieve similar plasma essential fatty acid (EFA) contents and similar proportional conversion of EFAs to LC-PUFAs. The MCT/LCT emulsion seems to protect EFAs and LC-PUFAs from beta-oxidation.  相似文献   

2.
Cold hardened and unhardened 8- or 16-month-old citrus plants were examined for differences in fatty acid (FA) content. Unhardened leaves from 8-month-old Valencia scion budded on sour orange rootstock had 29% less FAs than leaves from seedling sour orange. After cold hardening triacylglycerol (TAG) FAs increased 4-fold in Valencia on sour orange and 6-fold in sour orange seedling. The percentage of FAs associated with TAGs for unhardened-hardened 16-month-old Valencia on sour orange tissues were: upper leaves 7–20, lower leaves 6–17, bark 6–9, and roots 57–73%. Cold hardening increased the amount of TAG FAs of 16-month-old Valencia on sour orange in upper leaves by 226% and in lower leaves by 173%. Concentrations of linoleic acid increased by 479% in upper leaves and by 303% in lower leaves. Quantities of lionolenic acid in monogalactosyl diacylglycerols declined by 27% in upper leaves and by 20% in lower leaves.  相似文献   

3.
The fatty acids and polar lipid compositions of leaves from nine alpine species were almost identical to that of plants growing in habitats with little seasonal variation in temperature. Furthermore each polar lipid had about the same fatty acid composition in all plant species studied. It is suggested that neither the relative proportions of different lipid classes nor the degree of saturation of individual classes are directly implicated in the adaptation of plant tissues to different climates.  相似文献   

4.
地球生物圈75%以上的环境温度常年低于5℃,在这种低温环境中栖息着多种适应低温的微生物。在长期进化过程中低温微生物从细胞到分子水平形成一套独特的低温环境适应机制,而通过增加细胞膜膜脂中多不饱和脂肪酸含量来维持低温条件下最佳的细胞膜流动性是其中的一种。从多不饱和脂肪酸对微生物低温生长、细胞膜流动性细胞膜蛋白的组成和表达水平的影响来探讨多不饱和脂肪酸与微生物低温适应性的关系,总结多不饱和脂肪酸低温合成调节机制的研究进展,为相关的基础和应用开发研究提供参考。  相似文献   

5.
6.
Total lipid content, lipid classes and fatty acid composition in organs of Macoma balthica (L.) from the Gulf of Gdánsk (Puck Bay) were studied in different seasons. Marked differences among tissues in lipid class composition were observed. Triacylglycerides were accumulated in the hepatopancreas and in the female gonad in large quantities, while hydrocarbons were concentrated in male gonads, gills muscles and mantle. Fatty acid composition of gill lipids reflects the brackish water conditions of the Gulf of Gda sk in which Macoma balthica occurs.  相似文献   

7.
Effects of canopy shade on the lipid composition of soybean leaves   总被引:1,自引:0,他引:1  
The effect of canopy shade on leaf lipid composition was examined in soybeans ( Glycine max cv. Young) grown under field conditions. Expanding leaves were tagged at 50, 58 and 65 days after planting (DAP) in plots with either a high (10 plants m−1 row) or low (1 plant m−1 row) plant density. At 92 DAP, light conditions ranged from a pho-tosynthetic photon flux density (PPFD) of 87% of full sun with a far-red/red (735 nm/645 nm) ratio of 0.9 at upper canopy leaves to extreme shade where the PPFD was 10% of full sun with a far-red/red ratio greater than 6. Highly shaded leaves in the high plant density treatment accumulated triacylglycerol (TG) up to 25% of total leaf lipid, a 2.4-fold increase in TG on a chlorophyll basis compared to leaves in the upper canopy. Although total polar lipid content was reduced up to 50% in shaded leaves, shade had little affect on the lipid content or composition of thylakoid membranes. Shade did not affect leaf chlorophyll content. Therefore, the changes in leaf lipid composition were not related to senescence. These findings suggest that conditions of low irradiance and/or a high FR/R ratio cause a shift in carbon metabolism toward the accumulation of TG, a storage lipid. Eighteen-carbon fatty acid desaturation was also affected in highly shaded leaves where a reduction in linolenic acid (18:3) content was accompanied by a proportional increase in oleic (18:1) and linoleic (18:2) acids.  相似文献   

8.
Cellular and chloroplast lipids of the leaves of Mimosa pudica have been analysed. Qualitatively the total lipid composition of this plant is similar to that reported for the photosynthetic tissues of other plants. Chloroplast lipids show some resemblance to those of algae. The cerebroside fraction of both leaves and chloroplasts contains a polyunsaturated fatty acid (20:4ω3) and a long chain sphingosine base whose Rf value coincides with that from ox brain cerebroside and not with that of phytosphingosine from spinach.  相似文献   

9.
龙眼叶片膜脂脂肪酸组分与龙眼耐寒性的关系   总被引:8,自引:0,他引:8  
龙眼叶片膜脂不饱和脂肪酸含量和脂肪酸不饱和度与龙眼不同品种的耐寒性呈正相关;在年周期中,不饱和脂肪酸含量的变化与龙眼耐寒性的变化呈现平行关系;龙眼叶片膜脂脂肪酸组分含量反映着龙眼品种间耐寒性遗传上的差异,可作为耐寒性的鉴定指标。  相似文献   

10.
Naturally occurring diurnal variations in temperature are sufficient to induce a rapid cold hardening (RCH) response in insects. RCH can increase cold tolerance by 1-2 degrees C and extend the temperature interval at which insects can remain active. While the benefits of RCH are well established, the underlying physiological mechanisms remain unresolved. In this study we investigated the role of RCH on expression of heat shock proteins (Hsp70) after a cold shock, and the effect of RCH on the composition of phospholipid fatty acids (PLFAs) in membranes of Drosophila melanogaster. These experiments were performed on both "control" flies and flies selected for cold resistance in order to additionally examine a possible target for selection for cold tolerance. RCH improved survival following cold shock at -4, -6 and -8 degrees C. No induction of Hsp70 was found following cold shock irrespective of the pre-treatment. In contrast, a 5h RCH treatment was sufficient to induce small, but significant, changes in the composition of PLFAs. Here, the polyunsaturated linoleic acid, 18:2(n-6), increased while monounsaturated (18:1) and saturated (14:0) PLFAs decreased in abundance. These changes were observed in both selection groups and caused a significant increase in the overall degree of unsaturation. This response is consistent with the membrane response typically found during cold acclimation in ectothermic animals and it is likely adaptive to maintain membrane function during cold. Cold selection resulted in PLFA changes (decrease of 18:0 and 18:1 and increase of 14:0 and 16:1), which may improve the ability to harden during RCH.  相似文献   

11.
Five Coffea genotypes differing in their sensitivity to low positive temperatures were compared with regard to the effects of chilling on membrane integrity, as well as their ability to recover from cold-induced injury upon re-warming. Membrane damage was evaluated through electrolyte leakage, changes in membrane lipid composition and malondialdehyde (MDA) production in control conditions (25/20 degrees C, day/night), after a gradual temperature decrease period to 15/10 degrees C, after chilling treatment (3 nights at 4 degrees C) and upon re-warming to 25/20 degrees C during 6 days (recovery). C. dewevrei showed the highest electrolyte leakage at 15/10 degrees C and after chilling. This was due mainly to lipid degradation observed at 15/10 degrees C, reflecting strong membrane damage. Furthermore, MDA production after chilling conditions indicated the occurrence of lipid peroxidation. A higher susceptibility of C. dewevrei to cold also was inferred from the complete absence of recovery as regards permeability, contrary to what was observed in the remaining plants. Apoat? and Piat? presented significant leakage values after chilling. However, such effects were reversible under recovery conditions. Exposure to cold (15/10 degrees C and 3 x 15/4 degrees C) did not significantly affect membrane permeability in Catuaí and Icatú. Furthermore, no significant MDA production was observed even after chilling treatments in Apoat?, Piat?, Catuaí and Icatú, suggesting that the four genotypes had the ability to maintain membrane integrity and/or repair membrane damage caused by low temperatures. Apoat?, Piat? and, to a lower extent, Catuaí, were able to cope with gradual temperature decrease through an enhanced lipid biosynthesis. After acclimation, Piat? and Catuaí showed a lowering of digalactosyldiacylglycerol to monogalactosyldiacylglycerol ratio (MGDG/DGDG) as a result of enhanced DGDG synthesis, which represents an increase in membrane stability. The same was observed in Apoat? after chilling, in spite of phospholipids decrease. The studied parameters clearly indicated that chilling induced irreversible membrane damage in C. dewevrei. We also concluded that increased lipid synthesis, lower MGDG/DGDG ratio, and changes in membrane unsaturation occurring during acclimation to low temperatures may be critical factors in maintenance of cellular integrity under chilling.  相似文献   

12.
Dark germination of sea buckthorn (Hippophal rhamnoides L.) seeds was characterized by an initial 3-day-long lag-period, when the contents of triacylglycerols (TAGs) and polar lipids (PLs) remained nearly the same due to a retardation in lipid metabolization. Subsequently, TAG content declined rapidly, and by the 10th day of germination, it did not exceed 5% of total lipids. In this case, total saturated (S) and total unsaturated (U) fatty acids (FAs), as well as various TAG types such as S2U, SU2, and U3, were consumed at nearly similar relative rates. At the same time, separate TAG groups, which included one of the individual FAs, such as palmitic (P), stearic (St), oleic (O), linoleic (L), or linolenic (Le), differed from each other in the intensity of degradation. For L- and Le-TAGs, initial and final concentrations were similar, while initial concentrations of St- and O-TAGs by the 10th day of germination increased 2.3- and 1.5-fold, respectively, and as regards P-TAGs, this value decreased 3.5-fold. Thus, P-TAGs considerably exceeded other TAG groups in their consumption rate in seedlings, while St- and O-TAGs ranked below them in this respect. By the 10th day, the absolute level of PLs increased 16-fold due to a de novo formation of lipid membranes of the cells in the course of growth and differentiation of seedling tissues; this increase was accompanied by an increase in the S-FA concentration in PLs and a decrease in the amount of U-FAs.  相似文献   

13.
The effect of weak permanent horizontal magnetic field (PMF) with the intensity of 403 A/m on the composition and content of polar and neutral lipids and their constituent FAs was investigated in the leaves of radish plants (Raphanus sativus L., var. radicula D.C.), cv. Rozovo-krasnyi s belym konchikom, which belong to two major types of magnetic orientation (TMO): North-South (NS) and West-East (WE), with the planes of the root grooves oriented along and across the magnetic meridian, respectively. In spring, PMF reduced the level of total lipids in the NS plants and elevated it in the WE plants; in autumn, the content of total lipids in the NS plants increased in the NS plants and decreased in the WE plants. In spring, the ratio between phospholipids and sterols, which indirectly points to enhanced fluidity of membrane lipid bilayer, increased in the plants of both TMOs, while in autumn, it increased only in the NS plants. In the control plants, the relative content of unsaturated FAs, including linolenic and linoleic acids, was greater in the WE plants than in the NS plants. PMF elevated the content of FAs in the leaves of the NS plants and did not affect their level in the WE plants. It was concluded that weak horizontal PMF differently (and sometimes oppositely) affected the content of lipids in the leaves of the NS and WE radish plants, apparently due to their different sensitivity to the effect of the magnetic field associated with their physiological status.  相似文献   

14.
We have studied the effects of a weak permanent magnetic field (PMF) with strength of 403 A/m on the composition and content of polar and neutral lipids and the composition of their fatty acids (FAs). The lipids were isolated from the third, fourth, and fifth leaves of onion (Allium cepa L., cv. Arzamasskii) plants, and their composition was determined using TLC and GLC techniques. Plants growth under the conditions of a natural geomagnetic field served as a control. Most intense changes in the lipid content induced by PMF were observed in the fourth onion leaf. The content of total lipids and that of polar lipids (glyco-and phospholipids) changed, whereas the content of neutral lipids either decreased or remained unchanged. The phospholipid/sterol ratio increased, causing an increase in the fluidity of the membrane lipid bilayer. PMF induced an increase in the concentration of linolenic acid and the relative content of total unsaturated FAs. The effects of PMF on the content and composition of lipids in the third and fifth onion leaves were less pronounced, demonstrating differences between the leaves of various ages in their sensitivity to the effects of magnetic field. It is concluded that changes in the weak PMF within the limits of changes in the strength of geomagnetic field in the course of evolution can affect biochemical and physiological processes of plants.  相似文献   

15.
After 2, 10 and 24 hr labelling with [1-14C] acetate, radioactivity incorporated into the lipids of cotton leaves is mainly found in phosphatidylcholine, phosphatidylglycerol and neutral lipids. Galactolipids are slowly synthesized and after 24 hr, account for only 10% of the total radioactivity. Under water stress, a marked decrease of precursor incorporation into leaf lipids occurs, particularly in phosphatidylcholine and galactolipids. Relative incorporation into neutral lipids, on the contrary, increases. Water deficits provoke an inhibition of the fatty acid desaturation, resulting in a sharp decrease of linoleic and linolenic acid biosynthesis. The decrease in unsaturated fatty acid biosynthesis occurs in all lipid classes, but is most pronounced in the galactolipid fractions. In the drought-resistant cotton variety (Mocosinho), the variations in lipid and fatty acid metabolism under water stress are less pronounced than in the drought-sensitive variety (Reba), and this attests a greater stability of the membrane system.  相似文献   

16.
This study investigated the effects of crude rapeseed oil (RO) on lipid content and composition in muscle and liver of Arctic charr Salvelinus alpinus . Triplicate groups were fed diets containing fish oil (FO):RO ratio of 100:0, 75:25, 50:50 and 25:75 until two-fold mass increase. Total lipid content increased significantly in the liver with higher proportion of RO in the diet. Profound effects were seen in the fatty acid composition in the analysed tissues with a reduction in 20:5n-3 and 22:6n-3 and an increase in 18:2n-6 with higher RO content in the diets. A drop in cholesterol content was seen at 25% inclusion of RO in both tissues. Wild-caught fish contained a considerably higher amount of 20:4n-6 in both storage and membrane lipids of white muscle compared with the experimental fish.  相似文献   

17.
Nostoc flagelliforme Born. et Flah is highly adapted to drought stress, cold and light stresses, and suitable for growing in the unfavorable areas. This paper presents the results of the analysis of the membrane (mainly thylakoid membrane) lipids from N. flagelliforme in order to investigate the relationship between membrane lipid composition and stress resistance to this cyanobacteria. The membrane lipids are composed of monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), sulfoquinovosyl diacylglycerol (SQDG) and phosphatidylglycerol (PG). The major fatty acids in these lipids are palmitic (16∶0), palmitoleic (16∶1), stearic (18∶0), oleic (18∶1), linoleic (18∶2) and linolenic (18∶3) acids. In N. flagelliforme, polyunsaturated fatty acids account for 73% of the total fatty acids, much higher than that of the other cyanobacteria reported so far. Among which 16∶1 and 18∶3 are as high as 28.9% and 34.3% respectively. The high resistance of N. flagelliforme to abnormal conditions may be associated with the extent of unsaturation of fatty acids. In addition, the wild N. flagelliforme treated with water for 30 min and cultured for 24 h and the lipid and fatty acid composition were found to be not affected by water-absorption.  相似文献   

18.
A wide range of cold environments exist, with an equally broad variety of fungi and yeasts that have adapted to such environments. These adaptations, which affect membranes, enzymes and other cellular components, such as radical scavenging molecules, display a great potential for exploitation in biotechnology. Alterations have been detected in membrane lipids, with an increase in fatty acid unsaturated bonds that enhance their fluidity. We report new data on the different phospholipid composition in membrane lipids in the same fungal species from both Antarctic and temperate regions. The decrease in temperature causes intracellular oxidative stress by inducing the generation of reactive oxygen species. We report the results of the first analysis of the non-enzymatic antioxidant response and phenolic compound production by an Antarctic strain of Geomyces pannorum. A survey on yeasts from the cryosphere is reported with a focus on their adaptation to a cold environment. Some studies have shown that the number of macrofungi in glacier forefronts rises as deglaciation increases. The survival success of many plants in such areas may be attributed to their mycorrhizal associations. We highlighted the macrofungal biodiversity of some Italian alpine habitats, in which we Inocybe microfastigiata, Laccaria montana and Lactarius salicis-herbaceae were recorded for the first time in Lombardy (Italy).  相似文献   

19.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

20.
Summary Lipids are key components of all living cells. Acyl lipids and sterols provide the matrix of the biological membranes that both define the boundaries of cells and organelles, and act as sites for the trafficking of molecules within and into/out of cells. Lipids are also important metabolic intermediates and the most efficient form of energy storage that is available to a cell. It is the latter, energy-storing function that is of most relevance to this review. Storage lipids are accumulated in abundance in many of our most important crops, including maize, soybean, rapeseed, and oil palm, giving rise to a commerical sector valued at over $50 billion/year. Because the storage lipids of the major global oil crops have a relatively restricted composition, there is great interest in using all available breeding technologies, whether traditional or modern, to enhance the variation in lipid quality in existing crops and/or to domesticate new crops that already accumulate useful novel lipids. Over the past few decades, there has been a great deal of effort to manipulate fatty acid composition in order to produce novel lipids, especially for industrial applications. However, these attempts, many based on genetic engineering, have met with only limited commercial success-to date. More recently, there has been a resurgence of interest in the modification of both acyl and non-acyl lipids to enhance the nutritional quality of plant oils. In this review, we will examine the background to plant lipid modification and some of the latest developments, with a particular focus on edible oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号