首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
线粒体超微结构及其调控机制的研究进展   总被引:1,自引:0,他引:1  
线粒体超微结构是用电子显微镜观察到的精细结构,其可以根据不同能量需求和生理环境变化而变化,对线粒体功能具有关键调节作用.线粒体嵴结构是一种重要的线粒体超微结构,对多种线粒体疾病产生影响.因此,研究线粒体超微结构的调节机制,理解线粒体超微结构功能,对研究线粒体疾病的发病机理及寻找相关疾病的治疗靶点具有重要指导意义.本文详细介绍了线粒体嵴结构的主要调节机制,重点关注线粒体超微结构组成成分、线粒体超微结构对线粒体功能的影响、线粒体超微结构与线粒体疾病关系方面的研究进展,以期为制定更有效的线粒体疾病治疗方案提供理论参考.  相似文献   

2.
Cell death from mitochondrial dysfunction and compromised bioenergetics is common after ischemia-reperfusion injury and toxicant exposure. Thus, promoting mitochondrial biogenesis is therapeutically attractive for sustaining oxidative phosphorylation and maintaining ATP-dependent cellular functions. Here, we evaluated increased mitochondrial biogenesis prior to or after oxidant exposure in primary cultures of renal proximal tubular cells (RPTC). Over-expression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1 alpha (PGC-1alpha) in control RTPC increased basal and uncoupled cellular respiration, ATP, and mitochondria. Increasing mitochondrial number/function prior to oxidant exposure did not preserve mitochondrial function, but potentiated dysfunction and cell death. However, increased mitochondrial biogenesis after oxidant injury accelerated recovery of mitochondrial function. In oxidant treated RPTC, mitochondrial protein expression was reduced by 50%. Also, ATP and cellular respiration decreased 48 h after oxidant exposure, whereas mitochondrial function in injured RPTC over-expressing PGC-1alpha returned to control values. Thus, up-regulation of mitochondrial biogenesis after oxidant exposure accelerates recovery of mitochondrial and cellular functions.  相似文献   

3.
《BBA》2014,1837(2):226-231
It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present.  相似文献   

4.
5.
Electron transport system (ETS) function in mitochondria is essential for the aerobic production of energy. Because ETS function requires extensive interactions between mitochondrial and nuclear gene products, coadaptation between mitochondrial and nuclear genomes may evolve within populations. Hybridization between allopatric populations may then expose functional incompatibilities between genomes that have not coevolved. The intertidal copepod Tigriopus californicus has high levels of nucleotide divergence among populations at mitochondrial loci and suffers F2 hybrid breakdown in interpopulation hybrids. We hypothesize that hybridization results in incompatibilities among subunits in ETS enzyme complexes and that these incompatibilities result in diminished mitochondrial function and fitness. To test this hypothesis, we measured fitness, mitochondrial function, and ETS enzyme activity in inbred recombinant hybrid lines of Tigriopus californicus. We found that (1) both fitness and mitochondrial function are reduced in hybrid lines, (2) only those ETS enzymes with both nuclear and mitochondrial subunits show a loss of activity in hybrid lines, and (3) positive relationships exist between ETS enzyme activity and mitochondrial function and between mitochondrial function and fitness. We also present evidence that hybrid lines harboring mitochondrial DNA (mtDNA) and mitochondrial RNA polymerase (mtRPOL) from the same parental source population have higher fitness than those with mtDNA and mtRPOL from different populations, suggesting that mitochondrial gene regulation may play a role in disruption of mitochondrial performance and fitness of hybrids. These results suggest that disruption of coadaptation between nuclear and mitochondrial genes contributes to the phenomenon of hybrid breakdown.  相似文献   

6.
Cultures of hepatocytes and HepG2 cells provide useful in vitro models of liver specific function. In this study, we investigated metabolic and biosynthetic function in 3-D HepG2 spheroid cultures, in particular to characterise changes on prolonged culture. We show that HepG2 cells cultured in spheroids demonstrate a reduction in mitochondrial membrane potential and respiration following 10 days of culture. This coincides with a modest reduction in glycolysis but an increase in glucose uptake where increased glycogen synthesis occurs at the expense of the intracellular ATP pool. Lowered biosynthesis coincides with and is linked to mitochondrial functional decline since low glucose-adapted spheroids, which exhibit extended mitochondrial function, have stable biosynthetic activity during extended culture although biosynthetic function is lower. This indicates that glucose is required for biosynthetic output but sustained mitochondrial function is required for the maintenance of biosynthetic function. Furthermore, we show that cholesterol synthesis is markedly increased in spheroids cf. monolayer culture and that inhibition of cholesterol synthesis by lovastatin extends mitochondrial and biosynthetic function. Therefore, increased cholesterol synthesis and/or its derivatives contributes to mitochondrial functional decline in extended HepG2 spheroid cultures.  相似文献   

7.
Bcl-2 family proteins are known to control cell death and influence mitochondrial function. The function of Mcl-1, an anti-apoptotic Bcl-2 protein, is now shown to depend on its subcellular localization. Mcl-1 at the mitochondrial outer membrane inhibits mitochondrial permeabilization to block apoptosis. However, a cleaved form of Mcl-1 localizes to the mitochondrial matrix and controls inner mitochondrial morphology and oxidative phosphorylation, without directly modulating apoptosis.  相似文献   

8.
The conditions under which Coenzyme Q (CoQ) may protect platelet mitochondrial function of transfusional buffy coats from aging and from induced oxidative stress were investigated. The Pasteur effect, i.e. the enhancement of lactate production after inhibition of mitochondrial respiratory chain, was exploited as a marker of mitochondrial function as it allows to calculate the ratio of mitochondrial ATP to glycolytic ATP. Reduced CoQ 10 improves platelet mitochondrial function of transfusional buffy coats and protects the cells from induced oxidative stress. Oxidized CoQ is usually less effective, despite the presence, shown for the first time in this study, of quinone reductase activities in the platelet plasma membranes. The addition of a CoQ reducing system to platelets is effective in enhancing the protection of platelet mitochondrial function from the oxidative stress. The results support on one hand a possibility of protection of mitochondrial function in aging by exogenous CoQ intake, on the other a possible application in protection of transfusional buffy coats from storage conditions and oxidative deterioration.  相似文献   

9.
Dillon LM  Rebelo AP  Moraes CT 《IUBMB life》2012,64(3):231-241
Aging is the progressive decline in cellular, tissue, and organ function. This complex process often manifests as loss of muscular strength, cardiovascular function, and cognitive ability. Mitochondrial dysfunction and decreased mitochondrial biogenesis are believed to participate in metabolic abnormalities and loss of organ function, which will eventually contribute to aging and decreased lifespan. In this review, we discuss what is currently known about mitochondrial dysfunction in the aging skeletal muscle and heart. We focused our discussion on the role of PGC-1 coactivators in the regulation of mitochondrial biogenesis and function and possible therapeutic benefits of increased mitochondrial biogenesis in compensating for mitochondrial dysfunction and circumventing aging and aging-related diseases.  相似文献   

10.
Mitochondria and neuronal activity   总被引:4,自引:0,他引:4  
  相似文献   

11.
Mitochondria regulate critical components of cellular function via ATP production, reactive oxygen species production, Ca(2+) handling and apoptotic signaling. Two classical methods exist to study mitochondrial function of skeletal muscles: isolated mitochondria and permeabilized myofibers. Whereas mitochondrial isolation removes a portion of the mitochondria from their cellular environment, myofiber permeabilization preserves mitochondrial morphology and functional interactions with other intracellular components. Despite this, isolated mitochondria remain the most commonly used method to infer in vivo mitochondrial function. In this study, we directly compared measures of several key aspects of mitochondrial function in both isolated mitochondria and permeabilized myofibers of rat gastrocnemius muscle. Here we show that mitochondrial isolation i) induced fragmented organelle morphology; ii) dramatically sensitized the permeability transition pore sensitivity to a Ca(2+) challenge; iii) differentially altered mitochondrial respiration depending upon the respiratory conditions; and iv) dramatically increased H(2)O(2) production. These alterations are qualitatively similar to the changes in mitochondrial structure and function observed in vivo after cellular stress-induced mitochondrial fragmentation, but are generally of much greater magnitude. Furthermore, mitochondrial isolation markedly altered electron transport chain protein stoichiometry. Collectively, our results demonstrate that isolated mitochondria possess functional characteristics that differ fundamentally from those of intact mitochondria in permeabilized myofibers. Our work and that of others underscores the importance of studying mitochondrial function in tissue preparations where mitochondrial structure is preserved and all mitochondria are represented.  相似文献   

12.
Anthracyclines is an effective chemotherapeutic treatment used for many types of cancer. However, high cumulative dosage of anthracyclines leads to cardiac toxicity and heart failure. Dysregulation of mitochondrial dynamics and function are major pathways driving this toxicity. Several pharmacological and non‐pharmacological interventions aiming to attenuate cardiac toxicity by targeting mitochondrial dynamics and function have shown beneficial effects in cell and animal models. However, in clinical practice, there is currently no standard therapy for the prevention of anthracycline‐induced cardiotoxicity. This review summarizes current reports on the impact of anthracyclines on cardiac mitochondrial dynamics and mitochondrial function and potential interventions targeting these pathways. The roles of mitochondrial dynamics and mitochondrial function in the development of anthracycline‐induced cardiotoxicity should provide insights in devising novel strategies to attenuate the cardiac toxicity induced by anthracyclines.  相似文献   

13.
Myocardial remodelling is important pathological basis of HF, mitochondrial oxidative stress is a promoter to myocardial hypertrophy, fibrosis and apoptosis. ECH is the major active component of a traditional Chinese medicine Cistanches Herba, plenty of studies indicate it possesses a strong antioxidant capacity in nerve cells and tumour, it inhibits mitochondrial oxidative stress, protects mitochondrial function, but the specific mechanism is unclear. SIRT1/FOXO3a/MnSOD is an important antioxidant axis, study finds that ECH binds covalently to SIRT1 as a ligand and up-regulates the expression of SIRT1 in brain cells. We hypothesizes that ECH may reverse myocardial remodelling and improve heart function of HF via regulating SIRT1/FOXO3a/MnSOD signalling axis and inhibit mitochondrial oxidative stress in cardiomyocytes. Here, we firstly induce cellular model of oxidative stress by ISO with AC-16 cells and pre-treat with ECH, the level of mitochondrial ROS, mtDNA oxidative injury, MMP, carbonylated protein, lipid peroxidation, intracellular ROS and apoptosis are detected, confirm the effect of ECH in mitochondrial oxidative stress and function in vitro. Then, we establish a HF rat model induced by ISO and pre-treat with ECH. Indexes of heart function, myocardial remodelling, mitochondrial oxidative stress and function, expression of SIRT1/FOXO3a/MnSOD signalling axis are measured, the data indicate that ECH improves heart function, inhibits myocardial hypertrophy, fibrosis and apoptosis, increases the expression of SIRT1/FOXO3a/MnSOD signalling axis, reduces the mitochondrial oxidative damages, protects mitochondrial function. We conclude that ECH reverses myocardial remodelling and improves cardiac function via up-regulating SIRT1/FOXO3a/MnSOD axis and inhibiting mitochondrial oxidative stress in HF rats.  相似文献   

14.
Mitochondrial transport is critical for maintenance of normal neuronal function. Here, we identify a novel mitochondria protein, hypoxia up-regulated mitochondrial movement regulator (HUMMR), which is expressed in neurons and is markedly induced by hypoxia-inducible factor 1 α (HIF-1α). Interestingly, HUMMR interacts with Miro-1 and Miro-2, mitochondrial proteins that are critical for mediating mitochondrial transport. Interestingly, knockdown of HUMMR or HIF-1 function in neurons exposed to hypoxia markedly reduces mitochondrial content in axons. Because mitochondrial transport and distribution are inextricably linked, the impact of reduced HUMMR function on the direction of mitochondrial transport was also explored. Loss of HUMMR function in hypoxia diminished the percentage of motile mitochondria moving in the anterograde direction and enhanced the percentage moving in the retrograde direction. Thus, HUMMR, a novel mitochondrial protein induced by HIF-1 and hypoxia, biases mitochondria transport in the anterograde direction. These findings have broad implications for maintenance of neuronal viability and function during physiological and pathological states.  相似文献   

15.
Mitochondrial fission in apoptosis, neurodegeneration and aging   总被引:15,自引:0,他引:15  
A decline in mitochondrial function is well recognized in neurodegenerative diseases and aging, and is thought to play a causal role in their biology. Unfortunately, the molecular basis underlying this detrimental loss in mitochondrial function remains mysterious. Interestingly, mitochondria undergo frequent fission and fusion. This process is regulated by molecular machinery that has been highly conserved during evolution, including dynamin-related GTPases that manifest opposing effects. A balance between mitochondrial fission and fusion events is required for normal mitochondrial and cellular function. Emerging evidence indicates that mitochondria undergo rapid and extensive fission at an early stage during apoptosis. A clue that these new findings are of significance for the pathogenesis of neurodegenerative disease is provided by the observation that OPA-1, a dynamin-related GTPase regulating mitochondrial fusion, is mutated in humans with dominant optic atrophy, which is characterized by degeneration of retinal ganglion cells and childhood blindness. Loss of function of OPA-1, analogous to deficiency of its yeast homologue, Mgm1p, is expected to lead to mitochondrial fission, loss of mitochondrial DNA, respiratory deficits and an increase in reactive oxygen species. Here we review the molecular mediators controlling mitochondrial fission and fusion, and how death effector molecules may hijack this ancient machinery. A shift in the rate of mitochondrial fission or fusion may provide a new mechanistic explanation for the mitochondrial dysfunction in neurodegenerative diseases and normal aging, and may offer a new target for therapeutic intervention.  相似文献   

16.
The conditions under which Coenzyme Q (CoQ) may protect platelet mitochondrial function of transfusional buffy coats from aging and from induced oxidative stress were investigated. The Pasteur effect, i.e. the enhancement of lactate production after inhibition of mitochondrial respiratory chain, was exploited as a marker of mitochondrial function as it allows to calculate the ratio of mitochondrial ATP to glycolytic ATP. Reduced CoQ 10 improves platelet mitochondrial function of transfusional buffy coats and protects the cells from induced oxidative stress. Oxidized CoQ is usually less effective, despite the presence, shown for the first time in this study, of quinone reductase activities in the platelet plasma membranes. The addition of a CoQ reducing system to platelets is effective in enhancing the protection of platelet mitochondrial function from the oxidative stress. The results support on one hand a possibility of protection of mitochondrial function in aging by exogenous CoQ intake, on the other a possible application in protection of transfusional buffy coats from storage conditions and oxidative deterioration.  相似文献   

17.
Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains that gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts that biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

18.
Aging is a biological process characterized by impairment of cellular bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses, increased risk of contracting age-associated disorders that affects many tissues, with a more marked effect on brain and heart function. Oxidative stress is widely thought to underpin many aging processes. The mitochondrion is considered the most important cellular organelle to contribute to the aging process, mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids and mitochondrial DNA. Furthermore, exposure to oxidants, especially in the presence of Ca(2+), can induce the mitochondrial permeability transition with deleterious effects on mitochondrial function. Cardiolipin plays a central role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps in apoptosis and mitochondrial membrane stability and dynamics. Alterations to cardiolipin structure, content and acyl chain profile have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we focus on the role played by oxidative stress and cardiolipin in mitochondrial bioenergetic alterations associated with brain aging.  相似文献   

19.
From experiments with lower eukaryotes it is known that the metabolic rate and also the rate of aging are tightly controlled by the insulin-like growth factor (IGF)/insulin signal transduction pathway. The mitochondrial theory of aging implies that an increased metabolic rate leads to increased mitochondrial activity; increased production of reactive oxygen species due to these alterations would speed up the aging process. To address the question if mitochondrial activity is influenced by insulin/IGF signaling, we have established an experimental system to determine the influence of IGF-I-dependent signaling on mitochondrial function. We used DU145 prostate cancer cells, known for the intact IGF signal transduction pathway, to address the influence of IGF receptor activation on mitochondrial function by high-resolution respirometry. These experiments revealed that indeed mitochondrial function is regulated by IGF signaling, and up-regulation of respiration seems to require phosphoinositide 3-kinase/AKT signaling, but is independent of IGF effects on cell cycle progression. Collectively these data establish a regulatory cross-talk between insulin/IGF signal transduction and mitochondrial function, two major pathways implicated in controlling the rate of aging.  相似文献   

20.
Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号