首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isolated membranes from an Escherichia coli mutant strain which lacks spectroscopically detectable levels of cytochromes d, a1, and b558 also have abnormally low levels of N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity. In this paper, it is shown that the material previously identified as the N,N,N',N'-tetramethyl-p-phenylenediamine oxidase is, in fact, the two-subunit cytochrome d complex. Antisera directed against the native cytochrome d complex as well as against each of two subunits apparent on sodium dodecyl sulfate-polyacrylamide gels were used to show that the mutant strain lacks both subunits of the cytochrome d complex. Introduction of F-prime F152 into the mutant strain restored the two subunits along with the spectroscopic and enzymatic activity associated with the cytochrome d complex.  相似文献   

2.
Hay S  Wydrzynski T 《Biochemistry》2005,44(1):431-439
A mutant of the Escherichia coli cytochrome b(562) has been created in which the heme-ligating methionine (Met) at position 7 has been replaced with a histidine (His) (M7H). This protein is a double mutant that also has the His 63 to asparagine (H63N) mutation, which removes a solvent-exposed His. While the H63N mutation has no measurable effect on the cytochrome, the M7H mutation converts the atypical His/Met heme ligation in cytochrome b(562) to the classic cytochrome b-type bis-His ligation. This mutation has little effect on the K(d) of heme binding but significantly reduces the chemical and thermal stability of the mutant cytochrome relative to the wild type (wt). Both proteins have similar absorbance (Abs) and electron paramagnetic resonance (EPR) properties characteristic of 6-coordinate low-spin heme. The Abs spectra of the oxidized and reduced bis-His cytochrome are slightly blue-shifted relative to the wt, and the alpha Abs band of ferrous M7H mutant is unusually split. The M7H mutation decreases the midpoint potential of the bound heme by 260 mV at pH 7 and considerably alters the pH dependence of the E(m), which becomes dominated by a single pK(red) = 6.8.  相似文献   

3.
Abstract The in situ method for determination of reduction levels of cytochromes b and c pools during steady-state growth (Pronk et al., Anal. Biochem. 214, 149–155, 1993) was applied to chemostat cultures of the wild-type, a cytochrome aa3 single mutant and a cytochrome aa3/d double mutant of Azorhizobium caulinodans . For growth with NH4+ as the N source, the results indicate that (i) the aa3 mutant strains growing at a dissolved O2 tension of 0.5% possess an active alternative cytochrome c oxidase, which is hardly present during fully aerobic growth, and assuming that (i) also pertains to the wild-type, (ii) the wild-type uses cytochrome aa3 under fully aerobic conditions. For growth with N2 as the N source, it was found that the aa3 mutant strains growing at dissolved O2 tensions ranging from 0.5 to 3.0% also contain an active alternative cytochrome c oxidase.  相似文献   

4.
Two Bradyrhizobium japonicum cytochrome mutants were obtained by Tn5 mutagenesis of strain LO and were characterized in free-living cultures and in symbiosis in soybean root nodules. One mutant strain, LO501, expressed no cytochrome aa3 in culture; it had wild-type levels of succinate oxidase activity but could not oxidize NADH or N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The cytochrome content of LO501 root nodule bacteroids was nearly identical to that of the wild type, but the mutant expressed over fourfold more bacteroid cytochrome c oxidase activity than was found in strain LO. The Tn5 insertion of the second mutant, LO505, had a pleiotropic effect; this strain was missing cytochromes c and aa3 in culture and had a diminished amount of cytochrome b as well. The oxidations of TMPD, NADH, and succinate by cultured LO505 cells were very similar to those by the cytochrome aa3 mutant LO501, supporting the conclusion that cytochromes c and aa3 are part of the same branch of the electron transport system. Nodules formed from the symbiosis of strain LO505 with soybean contained no detectable amount of leghemoglobin and had no N2 fixation activity. LO505 bacteroids were cytochrome deficient but contained nearly wild-type levels of bacteroid cytochrome c oxidase activity. The absence of leghemoglobin and the diminished bacterial cytochrome content in nodules from strain LO505 suggest that this mutant may be deficient in some aspect of heme biosynthesis.  相似文献   

5.
The ctaBCDEF genes coding for cytochrome c oxidase were found to reside adjacent to a regulatory gene ctaA at 127 degrees on the Bacillus subtilis chromosome. The structural genes for subunits I and II, ctaD and ctaC, were deleted by gene-replacement using a phleomycin-resistance marker. The mutant was unable to oxidize N,N,N',N'-tetramethyl-p-phenylene-diamine and oxidized cytochrome c at a significantly lower rate. Absorption spectra of the mutant and wild-type membranes confirmed the presence of two haem A-containing enzymes in B. subtilis. Another mutant, with a spontaneous deletion upstream from ctaC, was found to express neither of these enzymes. Radioactive haem-labelling was used to identify subunit II, which contains a haem C, and cytochrome c-550 among the membrane-bound c-type cytochromes of B. subtilis.  相似文献   

6.
In culture, Azorhizobium caulinodans used at least four terminal oxidases, cytochrome aa3 (cytaa3), cytd, cyto, and a second a-type cytochrome, which together mediated general, respiratory electron (e-) transport to O2. To genetically dissect physiological roles for these various terminal oxidases, corresponding Azorhizobium apocytochrome genes were cloned, and three cytaa3 mutants, a cytd mutant, and a cytaa3, cytd double mutant were constructed by reverse genetics. These cytochrome oxidase mutants were tested for growth, oxidase activities, and N2 fixation properties both in culture and in symbiosis with the host plant Sesbania rostrata. The cytaa3 mutants grew normally, fixed N2 normally, and remained fully able to oxidize general respiratory e- donors (NADH, succinate) which utilize a cytc-dependent oxidase. By difference spectroscopy, a second, a-type cytochrome was detected in the cytaa3 mutants. This alternative a-type cytochrome (Amax = 610 nm) was also present in the wild type but was masked by bona fide cytaa3 (Amax = 605 nm). In late exponential-phase cultures, the cytaa3 mutants induced a new, membrane-bound, CO-binding cytc550, which also might serve as a cytc oxidase (a fifth terminal oxidase). The cloned Azorhizobium cytaa3 genes were strongly expressed during exponential growth but were deactivated prior to onset of stationary phase. Azorhizobium cytd mutants showed 40% lower N2 fixation rates in culture and in planta, but aerobic growth rates were wild type. The cytaa3, cytd double mutant showed 70% lower N2 fixation rates in planta. Pleiotropic cytc mutants were isolated by screening for strains unable to use N,N,N',N'-tetramethyl-p-phenylenediamine as a respiratory e- donor. These mutants synthesized no detectable cytc, excreted coproporphyrin, grew normally in aerobic minimal medium, grew poorly in rich medium, and fixed N2 poorly both in culture and in planta. Therefore, while aerobic growth was sustained by quinol oxidases alone, N2 fixation required cytc oxidase activities. Assuming that the terminal oxidases function as do their homologs in other bacteria, Azorhizobium respiration simultaneously employs both quinol and cytc oxidases. Because Azorhizobium terminal oxidase mutants were able to reformulate their terminal oxidase mix and grow more or less normally in aerobic culture, these terminal oxidases are somewhat degenerate. Its extensive terminal oxidase repertoire might allow Azorhizobium spp. to flourish in wide-ranging O2 environments.  相似文献   

7.
The cytochrome d terminal oxidase complex was recently purified from Escherichia coli membranes (Miller, M. J., and Gennis , R. B. (1983) J. Biol. Chem. 258, 9159-1965). The complex contains two polypeptides, subunits I and II, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and three spectroscopically defined cytochromes, b558 , a1, and d. A mutant that failed to oxidize N,N,N',N'-tetramethyl-p-phenylenediamine was obtained which was lacking this terminal oxidase complex and was shown to map at a locus called cyd on the E. coli genome. In this paper, localized mutagenesis was used to generate a series of mutants in the cytochrome d terminal oxidase. These mutants were isolated by a newly developed selection procedure based on their sensitivity to azide. Two classes of mutants which map to the cyd locus were obtained, cydA and cydB . The cydA phenotype included the lack of all three spectroscopically detectable cytochromes as well as the absence of both polypeptides, determined by immunological criteria. Strains manifesting the cydB phenotype lacked cytochromes a1 and d, but had a normal amount of cytochrome b558 . Immunological analysis showed that subunit I (57,000 daltons) was present in the membranes, but that subunit II (43,000 daltons) was missing. These data justify the conclusion that subunit I of this two-subunit complex can be identified as the cytochrome b558 component of the cytochrome d terminal oxidase complex.  相似文献   

8.
9.
Bradyrhizobium japonicum possesses three soluble c-type cytochromes, c550, c552, and c555. The genes for cytochromes c552 (cycB) and c555 (cycC) were characterized previously. Here we report the cloning, sequencing, and mutational analysis of the cytochrome c550 gene (cycA). A B. japonicum mutant with an insertion in cycA failed to synthesize a 12-kDa c-type cytochrome. This protein was detectable in the cycA mutant complemented with cloned cycA, which proves that it is the cycA gene product. The cycA mutant, a cycB-cycC double mutant, and a cycA-cycB-cycC triple mutant elicited N2-fixing root nodules on soybean (Nod+ Fix+ phenotype); hence, none of these three cytochromes c is essential for respiration supporting symbiotic N2 fixation. However, cytochrome c550, in contrast to cytochromes c552 and c555, was shown to be essential for anaerobic growth of B. japonicum, using nitrate as the terminal electron acceptor.  相似文献   

10.
A bacterial two-hybrid assay revealed interaction between a protein now designated bacterial Atx1 and amino-terminal domains of copper-transporting ATPases CtaA (cellular import) and PacS (thylakoid import) but not the related zinc (ZiaA) or cobalt (CoaT) transporters from the same organism (Synechocystis PCC 6803). The specificity of metallochaperone interactions coincides with metal specificity. After reconstitution in a N(2) atmosphere, bacterial Atx1 bound 1 mol of copper mol(-1), and apoPacS(N) acquired copper from copper-Atx1. Copper was displaced from Atx1 by p-(hydroxymercuri)phenylsulfonate, indicative of thiol ligands, and two cysteine residues were obligatory for two-hybrid interaction with PacS(N). This organism contains compartments (thylakoids) where the copper proteins plastocyanin and cytochrome oxidase reside. In copper super-supplemented mutants, photooxidation of cytochrome c(6) was greater in Deltaatx1DeltactaA than in DeltactaA, showing that Atx1 contributes to efficient switching from iron in cytochrome c(6) to copper in plastocyanin for photosynthetic electron transport. Cytochrome oxidase activity was also less in membranes purified from low [copper]-grown Deltaatx1 or DeltapacS, compared with wild-type, but the double mutant Deltaatx1DeltapacS was non-additive, consistent with Atx1 acting via PacS. Conversely, activity in Deltaatx1DeltactaA was less than in either respective single mutant, revealing that Atx1 can function without the major copper importer and consistent with a role in recycling endogenous copper.  相似文献   

11.
The function of the binuclear Cu(A) center in cytochrome c oxidase (CcO) was studied using two Rhodobacter sphaeroides CcO mutants involving direct ligands of the Cu(A) center, H260N and M263L. The rapid electron-transfer kinetics of the mutants were studied by flash photolysis of a cytochrome c derivative labeled with ruthenium trisbipyridine at lysine-55. The rate constant for intracomplex electron transfer from heme c to Cu(A) was decreased from 40000 s(-1) for wild-type CcO to 16000 s(-1) and 11000 s(-1) for the M263L and H260N mutants, respectively. The rate constant for electron transfer from Cu(A) to heme a was decreased from 90000 s(-1) for wild-type CcO to 4000 s(-1) for the M263L mutant and only 45 s(-1) for the H260N mutant. The rate constant for the reverse reaction, heme a to Cu(A), was calculated to be 66000 s(-1) for M263L and 180 s(-1) for H260N, compared to 17000 s(-1) for wild-type CcO. It was estimated that the redox potential of Cu(A) was increased by 120 mV for the M263L mutant and 90 mV for the H260N mutant, relative to the potential of heme a. Neither mutation significantly affected the binding interaction with cytochrome c. These results indicate that His-260, but not Met-263, plays a significant role in electron transfer between Cu(A) and heme a.  相似文献   

12.
The involvement of cytochrome b5 in palmitoyl-CoA desaturation by yeast microsomes was studied by using yeast mutants requiring unsaturated fatty acids and an antibody to yeast cytochrome b5. The mutants used were an unsaturated fatty acid auxotroph (strain E5) and a pleiotropic mutant (strain Ole 3) which requires either Tween 80 and ergosterol or delta-aminolevulinic acid for growth. Microsomes from the wild-type strain possessed both the desaturase activity and cytochrome b5, whereas those from mutant E5 contained the cytochrome but lacked the desaturase activity. Microsomes from mutant Ole 3 grown with Tween 80 plus ergosterol were devoid of both the desaturase activity and cytochrome b5, but those from delta-aminolevulinic acid-grown mutant Ole 3 contained cytochrome b5 and catalyzed the desaturation. The cytochrome b5 content in microsomes from mutant Ole 3 could be varied by changing the delta-aminolevulinic acid concentration in the growth medium, and the desaturase activity of the microsomes increased as their cytochrome b5 content was increased. The antibody to yeast cytochrome b5, but not the control gamma-globulin fraction, inhibited the NADH-cytochrome c reductase and NADH-dependent desaturase activities of the wild-type microsomes. It is concluded that cytochrome b5 is actually involved in the desaturase system of yeast microsomes. The lack of desaturase activity in mutant Ole 3 grown with Tween 80 plus ergosterol seems to be due to the absence of cytochrome b5 in microsomes, whereas the genetic lesion in mutant E5 appears to be located at ther terminal desaturase.  相似文献   

13.
Photosystem I (PSI) interacts with plastocyanin or cytochrome c6 on the luminal side. To identify sites of interaction between plastocyanin/cytochrome c6 and the PSI core, site-directed mutations were generated in the luminal J loop of the PsaB protein from Synechocystis sp. PCC 6803. The eight mutant strains differed in their photoautotrophic growth. Western blotting with subunit-specific antibodies indicated that the mutations affected the PSI level in the thylakoid membranes. PSI proteins could not be detected in the S600R/G601C/N602I, N609K/S610C/T611I, and M614I/G615C/W616A mutant membranes. The other mutant strains contained different levels of PSI proteins. Among the mutant strains that contained PSI proteins, the H595C/L596I, Q627H/L628C/I629S, and N638C/N639S mutants showed similar levels of PSI-mediated electron transfer activity when either cytochrome c6 or an artificial electron donor was used. In contrast, cytochrome c6 could not function as an electron donor to the W622C/A623R mutant, even though the PSI activity mediated by an artificial electron donor was detected in this mutant. Thus, the W622C/A623R mutation affected the interaction of the PSI complex with cytochrome c6. Biotin-maleimide modification of the mutant PSI complexes indicated that His-595, Trp-622, Leu-628, Tyr-632, and Asn-638 in wild-type PsaB may be exposed on the surface of the PSI complex. The results presented here demonstrate the role of an extramembrane loop of a PSI core protein in the interaction with soluble electron donor proteins.  相似文献   

14.
Two respiratory mutants of the aerobic bacterium, Vitreoscilla, have been studied: a CO-resistant mutant that can grow in 50% CO-50% oxygen, and a cyanide-resistant mutant that can grow in 1 mM KCN. Wild-type cells are unable to grow under either condition. This report presents evidence that the resistance of the CO mutant is due to an altered membrane-bound cytochrome o [cytochrome o(m)], and that of the cyanide mutant is due to the presence of an increased amount of cytochrome d, which has a lower affinity for cyanide than cytochrome o(m). The evidence was obtained from spectral studies on the three types of intact cells as well as enzymatic and ligand-binding techniques on the cytoplasmic cytochromes o[cytochrome o(s)] and the respiring membrane vesicles isolated from these cells. Carbon monoxide difference spectra of intact cells revealed a 5-nm shift in an absorption maximum of a CO-binding pigment in the CO mutant relative to that of the wild type. The formation of oxygenated cytochrome o(s) and its conversion to the reduced form when the cells became anaerobic due to cellular respiration were inhibited when 1 mM KCN was added to a cell suspension of wild-type cells; the cyanide mutant cells showed resistance to cyanide in this experiment. Cytochrome o(s) purified from all three cell types had identical physical, electron transferring, and ligand binding properties within experimental error. Respiring membrane vesicles isolated from the two mutants showed more resistance to inhibition by cyanide and carbon monoxide than those from the wild type. Carbon monoxide difference spectra of these membrane vesicles revealed that there was a fivefold increase in the amount of cytochrome d in the cyanide mutant relative to the wild type. A CO absorption band of the membrane-bound cytochrome o in the CO mutant membrane vesicles showed a 5-nm shift relative to that of the wild type.  相似文献   

15.
The structure of cytochrome f includes an internal chain of five water molecules and six hydrogen-bonding side chains, which are conserved throughout the phylogenetic range of photosynthetic organisms from higher plants, algae, and cyanobacteria. The in vivo electron transfer capability of Chlamydomonas reinhardtii cytochrome f was impaired in site-directed mutants of the conserved Asn and Gln residues that form hydrogen bonds with water molecules of the internal chain [Ponamarev, M. V., and Cramer, W. A. (1998) Biochemistry 37, 17199-17208]. The 251-residue extrinsic functional domain of C. reinhardtii cytochrome f was expressed in Escherichia coli without the 35 C-terminal residues of the intact cytochrome that contain the membrane anchor. Crystal structures were determined for the wild type and three "water chain" mutants (N168F, Q158L, and N153Q) having impaired photosynthetic and electron transfer function. The mutant cytochromes were produced, folded, and assembled heme at levels identical to that of the wild type in the E. coli expression system. N168F, which had a non-photosynthetic phenotype and was thus most affected by mutational substitution, also had the greatest structural perturbation with two water molecules (W4 and W5) displaced from the internal chain. Q158L, the photosynthetic mutant with the largest impairment of in vivo electron transfer, had a more weakly bound water at one position (W1). N153Q, a less impaired photosynthetic mutant, had an internal water chain with positions and hydrogen bonds identical to those of the wild type. The structure data imply that the waters of the internal chain, in addition to the surrounding protein, have a significant role in cytochrome f function.  相似文献   

16.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

17.
K Matsushita  H R Kaback 《Biochemistry》1986,25(9):2321-2327
The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N',N'-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase activity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified D-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced by either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To confirm that the cytochrome bc(1) complex exists as a dimer with intertwining Rieske iron-sulfur proteins in solution, four Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes containing two pairs of cysteine substitutions, one in the interface between the head domain of iron-sulfur protein (ISP) and cytochrome b and the other between the tail domain of ISP and cytochrome b, were generated and characterized. They are: K70C(ISP)/A185C(cytb).P33C(ISP)/G89C(cytb), K70C(ISP)/A185C(cytb).P33C(ISP)/M92C (cytb), K70C (ISP)/A185C(cytb).L34C(ISP)/V64C(cytb), and K70C(ISP)/A185C(cytb).N36C(ISP)/G89C(cytb). The K70C(ISP)/A185C(cytb) cysteine pair cross-links the head domain of ISP and cytochrome b; the P33C(ISP)/G89C(cytb), P33C(ISP)/M92C (cytb), L34C(ISP)/V64C(cytb), and N36C(ISP)/G89C(cytb) cysteine pairs cross-link the tail domain of ISP and cytochrome b. An adduct protein with an apparent molecular mass of 128 kDa containing two cytochrome b and two ISP proteins is detected in the K70C(ISP)/A185C(cytb).P33C(ISP)/G89C(cytb) and K70C(ISP)/A185C(cytb).N36C(ISP)/G89C(cytb) mutant complexes, confirming that the bc(1) complex exists as a dimer with intertwining ISPs. The loss of activity in these two double-cysteine-pair mutant complexes was attributed to the disulfide bond between the head domain of ISP and cytochrome b and not the one between the tail domain of ISP and cytochrome b.  相似文献   

19.
The heme of cytochrome P460 of Nitrosomonas europaea, which is covalently crosslinked to two cysteines of the polypeptide as with all c-type cytochromes, has an additional novel covalent crosslink to lysine 70 of the polypeptide [Arciero, D.M. & Hooper, A.B. (1997) FEBS Lett.410, 457-460]. The protein can catalyze the oxidation of hydroxylamine. The gene for this protein, cyp, was expressed in Pseudomonas aeruginosa strain PAO lacI, resulting in formation of a holo-cytochrome P460 which closely resembled native cytochrome P460 purified from N. europaea in its UV-visible spectroscopic, ligand binding and catalytic properties. Mutant versions of cytochrome P460 of N. europaea in which Lys70 70 was replaced by Arg, Ala, or Tyr, retained ligand-binding ability but lost catalytic ability and differed in optical spectra which, instead, closely resembled those of cytochromes c'. Tryptic fragments containing the c-heme joined only by two thioether linkages were observed by MALDI-TOF for the mutant cytochromes P460 K70R and K70A but not in wild-type cytochrome P460, consistent with the structural modification of the c-heme only in the wild-type cytochrome. The present observations support the hypothesized evolutionary relationship between cytochromes P460 and cytochromes c' in N. europaea and M. capsulatus[Bergmann, D.J., Zahn, J.A., & DiSpirito, A.A. (2000) Arch. Microbiol. 173, 29-34], confirm the importance of a heme-crosslink to the spectroscopic properties and catalysis and suggest that the crosslink might form auto-catalytically.  相似文献   

20.
Abstract A pleiotropic mutant of Escherichia coli affected in cytochrome biosynthesis was detected by anaerobic screening on a solid medium containing triphenyltetrazolium. When grown anaerobically on glycerol, nitrate and Casamino acids, this mutant exhibited a level of soluble cytochrome c 552 which was ten times higher than that found in wild-type cells. The level of membrane-bound cytochrome b and the activity of nitrate reductase were about half the normal level. The mutant grew aerobically on succinate or d,l -lactate at a greatly reduced rate. The mutation impairing the growth ability at the locus sox (succinate oxidation) is also responsible for the deficiency of cytochrome b , nitrate reductase and formate dehydrogenase. Mapping by transduction placed sox at 86.7 min on the chromosome, very close to the glnA locus. Genetic analysis also indicated that the elevated level of cytochrome c 552 was the result of a separate mutation, the location of which is yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号