共查询到20条相似文献,搜索用时 15 毫秒
1.
Poppe C Martin LC Gyles CL Reid-Smith R Boerlin P McEwen SA Prescott JF Forward KR 《Applied and environmental microbiology》2005,71(3):1184-1192
Salmonella enterica subsp. enterica serovar Newport resistant to the extended-spectrum cephalosporins (ESCs) and other antimicrobials causes septicemic salmonellosis in humans and animals and is increasingly isolated from humans, animals, foods, and environmental sources. Mechanisms whereby serovar Newport bacteria become resistant to ESCs and other classes of antimicrobials while inhabiting the intestinal tract are not well understood. The present study shows that 25.3% of serovar Newport strains isolated from the turkey poult intestinal tract after the animals were dosed with Escherichia coli harboring a large conjugative plasmid encoding the CMY-2 beta-lactamase and other drug resistance determinants acquired the plasmid and its associated drug resistance genes. The conjugative plasmid containing the cmy-2 gene was transferred not only from the donor E. coli to Salmonella serovar Newport but also to another E. coli serotype present in the intestinal tract. Laboratory studies showed that the plasmid could be readily transferred between serovar Newport and E. coli intestinal isolates. Administration of a single dose of ceftiofur, used to prevent septicemic colibacillosis, to 1-day-old turkeys did not result in the isolation of ceftiofur-resistant E. coli or Salmonella serovar Newport. There was a remarkable association between serotype, drug resistance, and plasmid profile among the E. coli strains isolated from the poults. This study shows that Salmonella serovar Newport can become resistant to ESCs and other antibiotics by acquiring a conjugative drug resistance plasmid from E. coli in the intestines. 相似文献
2.
3.
S Chattopadhyay S Paul DI Kisiela EV Linardopoulou EV Sokurenko 《Journal of bacteriology》2012,194(18):5002-5011
One of the strongest signals of adaptive molecular evolution of proteins is the occurrence of convergent hot spot mutations: repeated changes in the same amino acid positions. We performed a comparative genome-wide analysis of mutation-driven evolution of core (omnipresent) genes in 17 strains of Salmonella enterica subspecies I and 22 strains of Escherichia coli. More than 20% of core genes in both Salmonella and E. coli accumulated hot spot mutations, with a predominance of identical changes having recent evolutionary origin. There is a significant overlap in the functional categories of the adaptively evolving genes in both species, although mostly via separate molecular mechanisms. As a strong evidence of the link between adaptive mutations and virulence in Salmonella, two human-restricted serovars, Typhi and Paratyphi A, shared the highest number of genes with serovar-specific hot spot mutations. Many of the core genes affected by Typhi/Paratyphi A-specific mutations have known virulence functions. For each species, a list of nonrecombinant core genes (and the hot spot mutations therein) under positive selection is provided. 相似文献
4.
Perepelov AV Liu B Senchenkova SN Shashkov AS Guo D Feng L Knirel YA Wang L 《Carbohydrate research》2011,(2):381-383
The O-polysaccharide of Salmonella enterica O59 was studied using sugar analysis and 2D 1H and 13C NMR spectroscopy, and the following structure of the tetrasaccharide repeating unit was established:→2)-β-d-Galp-(1→3)-α-d-GlcpNAc-(1→4)-α-l-Rhap-(1→3)-β-d-GlcpNAc-(1→Accordingly, the O-antigen gene cluster of S. enterica O59 includes all genes necessary for the synthesis of this O-polysaccharide. Earlier, another structure has been reported for the O-polysaccharide of Salmonella arizonae (S. enterica IIIb) O59, which later was found to be identical to that of Citrobacter (Citrobacter braakii) O35 and, in this work, also to the O-polysaccharide of Escherichia coli O15. 相似文献
5.
The neutral theory of molecular evolution predicts that variation within species is inversely related to the strength of purifying selection, but the strength of purifying selection itself must be related to physical constraints imposed by protein folding and function. In this paper, we analyzed five enzymes for which polymorphic sequence variation within Escherichia coli and/or Salmonella enterica was available, along with a protein structure. Single and multivariate logistic regression models are presented that evaluate amino acid size, physicochemical properties, solvent accessibility, and secondary structure as predictors of polymorphism. A model that contains a positive coefficient of association between polymorphism and solvent accessibility and separate intercepts for each secondary-structure element is sufficient to explain the observed variation in polymorphism between sites. The model predicts an increase in the probability of amino acid polymorphism with increasing solvent accessibility for each protein regardless of physicochemical properties, secondary-structure element, or size of the amino acid. This result, when compared with the distribution of synonymous polymorphism, which shows no association with solvent accessibility, suggests a strong decrease in purifying selection with increasing solvent accessibility. 相似文献
6.
Evgeny N. Gordienko Marat D. Kazanov Mikhail S. Gelfand 《Journal of bacteriology》2013,195(12):2786-2792
Multiple sequencing of genomes belonging to a bacterial species allows one to analyze and compare statistics and dynamics of the gene complements of species, their pan-genomes. Here, we analyzed multiple genomes of Escherichia coli, Shigella spp., and Salmonella enterica. We demonstrate that the distribution of the number of genomes harboring a gene is well approximated by a sum of two power functions, describing frequent genes (present in many strains) and rare genes (present in few strains). The virtual absence of Shigella-specific genes not present in E. coli genomes confirms previous observations that Shigella is not an independent genus. While the pan-genome size is increasing with each new strain, the number of genes present in a fixed fraction of strains stabilizes quickly. For instance, slightly fewer than 4,000 genes are present in at least half of any group of E. coli genomes. Comparison of S. enterica and E. coli pan-genomes revealed the existence of a common periphery, that is, genes present in some but not all strains of both species. Analysis of phylogenetic trees demonstrates that rare genes from the periphery likely evolve under horizontal transfer, whereas frequent periphery genes may have been inherited from the periphery genome of the common ancestor. 相似文献
7.
YhdJ, a nonessential CcrM-like DNA methyltransferase of Escherichia coli and Salmonella enterica
下载免费PDF全文

Broadbent SE Balbontin R Casadesus J Marinus MG van der Woude M 《Journal of bacteriology》2007,189(11):4325-4327
The Caulobacter crescentus DNA adenine methyltransferase CcrM and its homologs in the alpha-Proteobacteria are essential for viability. CcrM is 34% identical to the yhdJ gene products of Escherichia coli and Salmonella enterica. This study provides evidence that the E. coli yhdJ gene encodes a DNA adenine methyltransferase. In contrast to an earlier report, however, we show that yhdJ is not an essential gene in either E. coli or S. enterica. 相似文献
8.
Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium 总被引:1,自引:0,他引:1
AIMS: The objective of this study was to evaluate the inhibitory activity of several natural organic compounds alone or in combination with nisin against Escherichia coli and Salmonella Typhimurium. METHODS AND RESULTS: The minimum inhibitory concentration (MIC) of five natural organic compounds were determined, and the effect of their combinations with nisin was evaluated by the checkerboard assay using the Bioscreen C. As expected, nisin by itself showed no inhibition against either of the Gram-negative bacteria. Thymol was found to be the most effective with the lowest MIC values of 1.0 and 1.2 mmol 1-1 against Salm. Typhimurium and E. coli, respectively. After thymol, the antimicrobial order of the natural organic compounds was carvacrol > eugenol > cinnamic acid > diacetyl. However, the combination of nisin with the natural organic compounds did not result in the enhancement of their antimicrobial activities. On the contrary, combination of nisin with diacetyl against Salm. Typhimurium resulted in an antagonism of diacetyl activity. CONCLUSIONS: While the individual natural organic compounds showed inhibitory activity against the two Gram-negatives, their combinations with nisin showed no improvement of antimicrobial activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the potential of the natural organic compounds to control E. coli and Salm. Typhimurium. 相似文献
9.
The beta-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent
下载免费PDF全文

Based on its genome sequence, the pathway of beta-oxidative fatty acid degradation in Salmonella enterica serovar Typhimurium LT2 has been thought to be identical to the well-characterized Escherichia coli K-12 system. We report that wild-type strains of S. enterica grow on decanoic acid, whereas wild-type E. coli strains cannot. Mutant strains (carrying fadR) of both organisms in which the genes of fatty acid degradation (fad) are expressed constitutively are readily isolated. The S. enterica fadR strains grow more rapidly than the wild-type strains on decanoic acid and also grow well on octanoic and hexanoic acids (which do not support growth of wild-type strains). By contrast, E. coli fadR strains grow well on decanoic acid but grow only exceedingly slowly on octanoic acid and fail to grow at all on hexanoic acid. The two wild-type organisms also differed in the ability to grow on oleic acid when FadR was overexpressed. Under these superrepression conditions, E. coli failed to grow, whereas S. enterica grew well. Exchange of the wild-type fadR genes between the two organisms showed this to be a property of S. enterica rather than of the FadR proteins per se. This difference in growth was attributed to S. enterica having higher cytosolic levels of the inducing ligands, long-chain acyl coenzyme As (acyl-CoAs). The most striking results were the differences in the compositions of CoA metabolites of strains grown with octanoic acid or oleic acid. S. enterica cleanly converted all of the acid to acetyl-CoA, whereas E. coli accumulated high levels of intermediate-chain-length products. Exchange of homologous genes between the two organisms showed that the S. enterica FadE and FadBA enzymes were responsible for the greater efficiency of beta-oxidation relative to that of E. coli. 相似文献
10.
11.
Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Exposed to Microcin-Producing Escherichia coli
下载免费PDF全文

Microcin 24 is an antimicrobial peptide secreted by uropathogenic Escherichia coli. Secretion of microcin 24 provides an antibacterial defense mechanism for E. coli. In a plasmid-based system using transformed Salmonella enterica, we found that resistance to microcin 24 could be seen in concert with a multiple-antibiotic resistance phenotype. This multidrug-resistant phenotype appeared when Salmonella was exposed to an E. coli strain expressing microcin 24. Therefore, it appears that multidrug-resistant Salmonella can arise as a result of an insult from other pathogenic bacteria. 相似文献
12.
13.
Microcin 24 is an antimicrobial peptide secreted by uropathogenic Escherichia coli. Secretion of microcin 24 provides an antibacterial defense mechanism for E. coli. In a plasmid-based system using transformed Salmonella enterica, we found that resistance to microcin 24 could be seen in concert with a multiple-antibiotic resistance phenotype. This multidrug-resistant phenotype appeared when Salmonella was exposed to an E. coli strain expressing microcin 24. Therefore, it appears that multidrug-resistant Salmonella can arise as a result of an insult from other pathogenic bacteria. 相似文献
14.
《Biochemical and biophysical research communications》2020,521(3):577-583
We developed a synthetic RNA approach to identify growth inhibition sequences by cloning random 24-nucleotide (nt) sequences into an arabinose-inducible expression vector. This vector expressed a small RNA (sRNA) of ∼140 nt containing a 24 nt random sequence insert. After transforming Escherichia coli with the vector, 10 out of 954 transformants showed strong growth defect phenotypes and two clones caused cell lysis. We then examined growth inhibition phenotypes in the Salmonella Typhimurium LT2 strain using the twelve sRNAs that exerted an inhibitory effect on E. coli growth. Three of these clones showed strong growth inhibition phenotypes in S. Typhimurium LT2. The most effective sRNA contained the same insert (N1) in both bacteria. The 24 nt random sequence insert of N1 was abundant in guanine residues (ten out of 24 nt), and other random sequences causing growth defects were also highly enriched for guanine (G) nucleotides. We, therefore, generated clones that express sRNAs containing a stretch of 16 to 24 continuous guanine sequences (poly-G16, -G18, -G20, -G22, and -G24). All of these clones induced growth inhibition in both liquid and agar plate media and the poly-G20 clone showed the strongest effect in E. coli. These results demonstrate that our sRNA expression system can be used to identify nucleotide sequences that are potential candidates for oligonucleotide antimicrobial drugs. 相似文献
15.
John W. Schmidt Getahun E. Agga Joseph M. Bosilevac Dayna M. Brichta-Harhay Steven D. Shackelford Rong Wang Tommy L. Wheeler Terrance M. Arthur 《Applied and environmental microbiology》2015,81(2):713-725
Specific concerns have been raised that third-generation cephalosporin-resistant (3GCr) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr) E. coli, 3GCr
Salmonella enterica, and nalidixic acid-resistant (NALr) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCr
Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALr
S. enterica was detected on only one hide. 3GCr
E. coli and COTr
E. coli were detected on 100.0% of hides during processing. Concentrations of 3GCr
E. coli and COTr
E. coli on hides were correlated with pre-evisceration carcass contamination. 3GCr
E. coli and COTr
E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COTr
E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria. 相似文献
16.
Live L. Nesse Kristin Berg Lene K. Vestby 《Applied and environmental microbiology》2015,81(6):2226-2232
Polyamines are present in all living cells. In bacteria, polyamines are involved in a variety of functions, including biofilm formation, thus indicating that polyamines may have potential in the control of unwanted biofilm. In the present study, the effects of the polyamines norspermidine and spermidine on biofilms of 10 potentially pathogenic wild-type strains of Escherichia coli serotype O103:H2, Salmonella enterica subsp. enterica serovar Typhimurium, and S. enterica serovar Agona were investigated. We found that exogenously supplied norspermidine and spermidine did not mediate disassembly of preformed biofilm of any of the E. coli and S. enterica strains. However, the polyamines did affect biofilm production. Interestingly, the two species reacted differently to the polyamines. Both polyamines reduced the amount of biofilm formed by E. coli but tended to increase biofilm formation by S. enterica. Whether the effects observed were due to the polyamines specifically targeting biofilm formation, being toxic for the cells, or maybe a combination of the two, is not known. However, there were no indications that the effect was mediated through binding to exopolysaccharides, as earlier suggested for E. coli. Our results indicate that norspermidine and spermidine do not have potential as inhibitors of S. enterica biofilm. Furthermore, we found that the commercial polyamines used contributed to the higher pH of the test medium. Failure to acknowledge and control this important phenomenon may lead to misinterpretation of the results. 相似文献
17.
Recent horizontal transmission of plasmids between natural populations of Escherichia coli and Salmonella enterica. 总被引:1,自引:0,他引:1
下载免费PDF全文

Seventy-one natural isolates obtained from a Salmonella reference collection were examined for the presence of plasmids closely related to the Escherichia coli F plasmid. The collection consists of several serovars of the S. enterica Typhimurium complex, subspecies I, to which 99% of pathogenic salmonellae belong. Molecular genetic techniques of DNA hybridization, along with PCR and DNA sequencing, were used to examine the occurrence, distribution, and genetic diversity of F-like plasmids among Salmonella strains. The F plasmid genes examined were finO, traD, traY, and repA, which map at dispersed positions on the F plasmid of E. coli. Comparative sequence analysis of each of the four genes in Salmonella plasmids showed them to be homologous (in some cases, virtually identical) to those found in F plasmids of E. coli natural isolates. Furthermore, the frequency of F-like plasmids in Salmonella strains was approximately the same as that observed in the E. coli Reference Collection. However, in Salmonella, the distribution was confined predominately to the serovars Typhimurium and Muenchen. The unexpected finding of a shared pool of F-like plasmids between S. enterica and E. coli demonstrates the significant role of conjugation in the histories of these important bacterial species. 相似文献
18.
Cobalt stress in Escherichia coli and Salmonella enterica: molecular bases for toxicity and resistance 总被引:1,自引:0,他引:1
Cobalt (Co) is present in trace amounts in the environment but it can be toxic when it accumulates in cells. The question of how Co produces its toxic effects and how living organisms protect themselves from, and resist to, such a stress remains to be clarified. Studies pertaining to these issues were recently carried out in Escherichia coli and Salmonella enterica. Iron-sulfur proteins were identified as primary targets of Co ions. Perturbation of iron homeostasis, oxidative stress and possible effects on sulfur assimilation were noticed. Cells were found to respond by up-regulating genes involved in the biosynthesis of Fe-S clusters as well as genes involved in Co efflux. These data are summarized in this review article to provide a preliminary general view of Co toxicity mechanisms in these two bacterial models. 相似文献
19.
Reissbrodt R Rienaecker I Romanova JM Freestone PP Haigh RD Lyte M Tschäpe H Williams PH 《Applied and environmental microbiology》2002,68(10):4788-4794
Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli were stressed by prolonged incubation in water microcosms until it was no longer possible to observe colony formation when samples were plated on nonselective medium. Overnight incubation of samples in nutrient-rich broth medium supplemented with growth factors, however, allowed resuscitation of stressed and viable but nonculturable cells so that subsequent plating yielded observable colonies for significantly extended periods of time. The growth factors were (i) the trihydroxamate siderophore ferrioxamine E (for Salmonella only), (ii) the commercially available antioxidant Oxyrase, and (iii) the heat-stable autoinducer of growth secreted by enterobacterial species in response to norepinephrine. Analysis of water microcosms with the Bioscreen C apparatus confirmed that these supplements enhanced recovery of cells in stressed populations; enterobacterial autoinducer was the most effective, promoting resuscitation in populations that were so heavily stressed that ferrioxamine E or Oxyrase had no effect. Similar results were observed in Bioscreen analysis of bacterial populations stressed by heating. Patterns of resuscitation of S. enterica serovar Typhimurium rpoS mutants from water microcosms and heat stress were qualitatively similar, suggesting that the general stress response controlled by the sigma(s) subunit of RNA polymerase plays no role in autoinducer-dependent resuscitation. Enterobacterial autoinducer also resuscitated stressed populations of Citrobacter freundii and Enterobacter agglomerans. 相似文献
20.
AIMS: To compare genetic composition of plasmids using microarrays composed of randomly selected fragments of plasmid DNA. METHODS AND RESULTS: Separate shotgun libraries were constructed from plasmid DNA pooled from Escherichia coli and Salmonella enterica. Cloned fragments were used as probes for microarrays. Plasmid targets were labelled, hybridized overnight, and bound targets were imaged after enzymatic signal amplification. Control hybridizations demonstrated significantly higher signal when probes and targets shared >95% sequence identity. Diagnostic sensitivity and specificity of the assay was 95 and 99%, respectively. Cluster analysis showed close matches for replicate experiments with a high correlation between replicates (r = 0.91) compared with the correlation for nonreplicates (r = 0.09). Analysis of hybridization data from 43 plasmids generated five distinct clusters, two for known serovar-specific plasmids, one for enterohemorrhagic E. coli plasmids, and two for plasmids harboring a recently disseminated antibiotic resistance gene (bla(CMY-2)). CONCLUSION: Mixed-plasmid microarrays are suitable for comparing genetic content of wild-type plasmids and hybridization results from this study suggest several novel hypotheses about plasmid gene exchange between E. coli and S. enterica. SIGNIFICANCE AND IMPACT OF STUDY: Mixed-plasmid microarrays permit rapid, low cost analysis and comparison of many plasmids. This ability is critical to understanding the source, fate, and transport of plasmids amongst commensal and pathogenic bacteria. 相似文献