首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The general wood structure, vessel size and distribution along the stem xylem radius and in petioles were studied in Laurus azorica trees living in a Tenerife laurel forest. The fractions of volume occupied by dry matter, water and air in percentage of wood fresh volume were also studied. The wood showed a diffuse-porous structure, with solitary vessels or vessels somewhat clustered in small radially oriented groups. Vessels had a diameter ranging from 20 to 130 µm. This diameter was minimal close to the pith, increased more than 2-fold with age, and reached its maximum width close to the cambium. Vessel density decreased from 36 vessels mm-2 near the pith to about 13 vessels mm-2 near the cambium. Accordingly, the lumen area was small in young xylem close to the pith (0.0015 mm2), reaching a value 5 times larger (0.007 mm2) near the cambium than in the centre of the stem. Lumen area of vessels in petioles was about 1.5% of petiole cross-sectional area and thus much lower than in stems. Mean hydraulic diameter of these vessels was about 20 µm, and mean vessel density about 136 per petiole. There were only small differences in proportions of dry matter, water and air along stem radius. The relevance of each one of these fractions in the wood is discussed as evidence of the possible existence of a number of embolized vessels dispersed in the total functional cross-sectional area of the xylem.  相似文献   

2.
Ecological wood anatomy ofAlnus nepalensis (Betulaceae) in East Nepal   总被引:1,自引:0,他引:1  
Wood anatomical characters ofAlnus nepalensis growing in East Nepal are evaluated against three non-anatomical factors: tree height, diameter at breast height (DBH), and altitude. Samples were taken from the outermost part of the trunk of five canopy trees at 11 localities between 790 and 2,740 m above sea level. Tree height ranged from 10 to 28 m, and DBH ranged from 15 to 80 cm. Altitude and tree height are correlated with all the vessel characters studied. Among wood anatomical characters, vessel characters measured from cross sections are strongly correlated with one another, and are also correlated with vessel element and fiber-tracheid length. Multiple regression analysis using non-anatomical factors as independent variables resulted in significant correlation at 1% level in all pore characters, vessel element length, perforation plate bar number, and fibertracheid length. Regression coefficients of significant regressions are usually largest for altitude. For wood structure ofAlnus nepalensis in East Nepal, 23 to 42% of the variation is affected by non-anatomical factors. The large contribution of altitude is considered to be an indirect measure of the effect of temperature.  相似文献   

3.

Key message

In tropical forests, co-occurring woody monocot and dicot species adapted different water use strategies highly depending on their investment in the hydraulic conduit properties.

Abstract

We studied the hydraulic efficiency of palms and broad-leaved tropical tree species from a moist tropical lowland forest in the Central Brazilian Amazon. Therefore, we harvested 34 trees and 10 açai palms and measured vessel size and frequency at diameter at breast height and additionally at the base of the crown shaft for the palms. Further, we assessed the active xylem area to estimate the hydraulic conductivity through Hagen Poiseuille’s adapted theoretical equation. Mean vessel diameter in dicot trees was 127.62 ± 49.22 μm with an average 9.09 ± 6.50 vessels per mm2. Mean conduits sizes at the base (h = 0.10 m) of palm trees were larger with 288.20 ± 32.96 μm and less frequent with 1.40 ± 0.46 vessels per mm2. Hydraulic conductivity was on average 3.31 ± 4.59 kg m?1 s?1 MPa?1 for dicot trees. Mean hydraulic conductivity in açai palms was 20.45 ± 10.6 kg m?1 s?1 MPa?1 at the base, and increased to 124.73 ± 55.2 kg m?1 s?1 MPa?1 at the crown base. Hydraulic conductivity at the base of the crown was higher than in the base of the trunk due to the high density of vessels in a small cross-section in this height. Furthermore, we found a species-independent relationship between vessel diameter and frequency. We conclude that the differences found in the hydraulic efficiency give some evidence that palms have a lower occurrence of embolism and cavitation than trees, which is due to stiffer and stronger conduit pathways and efficient drought-avoiding strategies. The differences in hydraulic architecture between palms and trees imply different water use patterns thus varying niche differentiation, but this does not consequently need to be an excluding factor for coexistence in the same environment.
  相似文献   

4.
Biomass and biomass expansion factor functions are important in wood resource assessment, especially with regards to bioenergy feedstocks and carbon pools. We sampled 48 poplar trees in seven stands with the purpose of estimating allometric models for predicting biomass of individual tree components, stem-to-aboveground biomass expansion factors (BEF) and stem basic densities of the OP42 hybrid poplar clone in southern Scandinavia. Stand age ranged from 3 to 31 years, individual tree diameter at breast height (dbh) from 1.2 to 41 cm and aboveground tree biomass from 0.39 to 670 kg. Models for predicting total aboveground leafless, stem and branch biomass included dbh and tree height as predictor variables and explained more than 97 % of the total variation. The BEF was approaching 2.0 for the smallest trees but declined with increasing tree size and stabilized around 1.2 for trees with dbh >10 cm. Average stem basic density was more than 400 kg m?3 for the smallest trees but declined with increasing tree height and stabilized around 355 kg m?3, at a tree height of about 20 m. Existing biomass functions from the literature all underestimated the measured sample tree biomass. Possible explanations include not only differences in competition among trees in the examined stands and site conditions but also differences in sampling procedures. We observed that basic density increased with height above the ground. This trend may have led to the observed underestimation by existing biomass functions including only few samples from the lower end of the stems.  相似文献   

5.
Role of Cytokinin in Vessel Regeneration in Wounded Coleus Internodes   总被引:1,自引:0,他引:1  
Cytokinin was found to be a controlling or limiting factor invessel regeneration around a wound in internodes of Coleus blumeiBenth. in which the endogenous cytokinin level was minimized.The cytokinin was applied in aqueous solution to the base ofexcised, mature internodes that had an active vascular cambium.Each internode also received IAA in lanolin at its apical end.Under low (0.1 %, w/w) or high (10%, w/w) auxin concentrations,the control internodes (without exogenous cytokinin) exhibitedsmall amounts of vessel regeneration. At appropriate concentrationszeatin, kinetin and 6-benzylamino-purine (BAP) induced a significantincrease in vessel regeneration around the wound. The threecytokinins also induced novel patterns of supplementary regenerationfurther from the wound surface. Kinetin and BAP showed the strongestpromoting effect at 5 and 10 µg ml–1, while zeatinwas most effective at 20 µg ml–1. At a low (0.1%) auxin level zeatin was the most effective cytokinin, whereaskinetin was the most effective one at high (1 %) auxin. An inhibitoryeffect on vessel regeneration was observed at the highest kinetinconcentration tested (50 µg ml–1). The regenerationof vessels induced by cytokinin was very polar. Many more regeneratedvessel members differentiated below the wound than above it,and the regeneration process proceeded acropetally from thebase of the internode to its upper parts. Our results implya basipetal polar increase in cambium responsiveness along thestem axis from internode 5 to 7. The possible significance ofsuch a basipetal increase in cambium sensitivity in wood formationin trees is discussed. Auxin, Coleus blumei, cytokinin, vascular differentiation, vessel regeneration, wound xylem  相似文献   

6.
Microscopic analyses of tundra soils from northern central Siberia, Taimyr Peninsula (74.5°N, 98.5°E) were performed in order to investigate spatial variation of fungal and bacterial biomass. Biomass figures of fungi and bacteria (µg C g-1 dry wt.) were measured from 11 permafrost soil pits. Fungal biovolume of up to 3.5 mm3 g-1 dry wt. (median 0.19 mm3 g-1 dry wt.) and a maximum hyphal length of 393 m g-1 dry wt. (median 21 m g-1 dry wt.) were determined. Fungal biomass was found up to 455 µg C g-1 dry wt. (median 24 µg C g-1 dry wt.). The amounts generally decreased with depth but increased within organic horizons. Little fungal biomass was found in the unvegetated soils or deep horizons above the permafrost table. Bacterial counts ranged from 0.16 to 7.38*109 g-1 dry wt. and bacterial biomass ranged from 0.68 to 20.38 µg C g-1 dry wt. (median 6.19 µg C g-1 dry wt.) because of small cell volume (median 0.04 µm3). Microbial biomass was generally dominated by fungi as shown by the ratio of fungal to bacterial biomass, which was between 0 and 174.1 (median 4.5). Plant cover and soil organic matter content were found to be the important keys in understanding microbial ecology in arctic tundra soils.  相似文献   

7.
Blood flow modelling has previously been successfully carried out in arterial trees to study pulse wave propagation using nonlinear or linear flow solvers. However, the number of vessels used in the simulations seldom grows over a few hundred. The aim of this work is to present a computationally efficient solver coupled with highly detailed arterial trees containing thousands of vessels. The core of the solver is based on a modified transmission line method, which exploits the analogy between electrical current in finite-length conductors and blood flow in vessels. The viscoelastic behaviour of the arterial-wall is taken into account using a complex elastic modulus. The flow is solved vessel by vessel in the frequency domain and the calculated output pressure is then used as an input boundary condition for daughter vessels. The computational results yield pulsatile blood pressure and flow rate for every segment in the tree. This solver is coupled with large arterial trees generated from a three-dimensional constrained constructive optimisation algorithm. The tree contains thousands of blood vessels with radii spanning ~1 mm in the root artery to ~30 μm in leaf vessels. The computation takes seconds to complete for a vasculature of 2048 vessels and less than 2 min for a vasculature of 4096 vessels on a desktop computer.  相似文献   

8.
西双版纳热带季节雨林的生物量及其分配特征   总被引:12,自引:2,他引:12       下载免费PDF全文
 根据3块1 hm2 样地的调查资料,利用123株样木数据建立以胸径(D)为单变量的生物量预测方程。采用样木回归分析法(乔木层、木质藤本)和样 方收获法(灌木层、草本层), 获取西双版纳热带季节雨林的生物量,并分析了其组成和分配特征。结果表明,西双版纳热带季节雨林的总生物 量为423.908±109.702 Mg•hm-2(平均值±标准差,n=3) ,其中活体植物生物量占95.28%,粗死木质残体占4.07%,地上凋落物占 0.64%。在 其层次分配方面:乔木层优势明显,占98.09%±0.60%;其次为木质藤本,占0.83%±0.31%;灌木层和草本层生物量均小于木质藤本的生物量; 附生植物最低,仅为0.06%±0.03%。总生物量的器官分配以茎所占比例最高,达68.33%;根、枝、叶的比例分别为18.91%、11.07%和1.65 %。 乔木层生物量的径级分配主要集中于中等径级和最大径级。大树(D>70 cm)具有较高的生物量,占整个乔木层的43.67%±12.67%。树种分配方 面,生物量排序前10位的树种占乔木层总生物量的63.43%±4.09%,生物量集中分配于少量优势树种。西双版纳热带季节雨林乔木层叶面积指数 为6.39±0.85。西双版纳热带季节雨林乔木层的地上生物量位于世界热带湿润森林的中下范围。  相似文献   

9.
城市土地利用显著改变了原有生态系统的结构和功能,特别是建成区植被的碳吸收和碳储存能力。该研究通过实地调查和测量,估算城市建成区内乔木、灌木、草坪的生物量和净初级生产力(net primary productivity,NPP),该方法考虑了园林管理(如修剪或割草)对建成区碳吸收和碳储存的影响。结果表明,台州城市树木个体生物量年增量是野外森林中同类树木的近2倍;乔木修剪量占乔木NPP的1/3。目前台州市建成区的植被碳吸收能力为2.1×103kgC.hm–2.a–1(其中乔木的贡献为64%,灌木为9%,草坪为27%),低于本地野外森林同面积的碳吸收能力;通过与野外常绿阔叶林比较发现,增加台州建成区的绿化覆盖率(从23%提高到46%)即可补偿因城市扩张引起的植被碳吸收能力的损失。  相似文献   

10.
A meso-scale oceanographic grid survey was conducted during the first cruise of the Marion Offshore Ecosystem Variability Study in the upstream region of the Prince Edward Islands in austral autumn (April/May) 2001. Mesozooplankton samples, collected using a Bongo net (fitted with 200-µm and 300-µm mesh nets), were separated into three size fractions, 200-500 µm, 500-1,000 µm, 1,000-2,000 µm, by reverse filtration. Total surface (depth<5 m) chlorophyll-a concentration during the study ranged between 0.11 and 0.34 µg l-1 and was always dominated by picophytoplankton (0.45-2.0 µm). Total mesozooplankton abundance and biomass during the survey ranged between 49 and 1,512 ind. m-3 and between 0.7 and 25 mg Dwt. m-3, respectively. Throughout the survey, the 200 to 500 µm class numerically dominated the mesozooplankton community, with an average of ~69% (SD=ᆠ.3%). The dominant species in the 200- to 500-µm size fraction were the copepods, Oithona similis, Calanus simillimus and Metridia lucens, and the pteropod, Limacina retroversa. However, in terms of biomass, the 1,000- to 2,000-µm group was predominant, with dry weight values constituting an average of ~66% (SD=ᆞ.2%). The most well-represented species in this group were the carnivorous Euphausia vallentini, Thysanoessa vicina, Sagitta gazellae and Eukrohnia hamata. Three distinct groupings of stations were identified by numerical analysis. The different station groupings identified reflect changes in the relative contributions of the dominant species, as opposed to the presence/absence of species.  相似文献   

11.
By manipulating hormone levels, light intensities and temperature, we have developed an efficient leaf-disc method for the regeneration of plants via embryogenesis and for transformation in four genotypes of Vitis vinifera L. In MS basal medium supplemented with 1 mg l-1 6-benzylaminopurine (BAP) and 0.1 mg l-1 2,4-dichlorophenoxyacetic acid, leaf discs cultured for 2 weeks under dark conditions produced calli in over 80% of the cultures. These subsequently differentiated into pro-embryos and embryos only if kept under conditions of low light intensity (15 µE m-2 s-1) for 2 weeks before being transferred to conditions of high light intensity (60 µE m-2 s-1). If the calli were directly transferred to high light intensity, the differentiation into embryos was blocked and the calli turned pink. The somatic embryos germinated at a frequency of about 10% on NN basal medium and about 32% on NN medium supplemented with 1 mg l-1BAP and 0.1 mg l-1 indole-3-butyric acid. The embryos, however, germinated when pre-exposed to a low temperature of 4°C for 2 weeks. If they were transferred directly to room temperature under conditions of high light intensity (60 µE m-2 s-1), shoot buds were produced, whereas under conditions of low light intensity (15 µE m-2 s-1) secondary embryogenesis was induced. About 90-95% of the in vitro grown plantlets could be successfully transferred to soil. The above method was also applicable for developing transgenic embryos whose transgenic nature was monitored using #-glucuronidase as a reporter gene.  相似文献   

12.
Summary Vessel dimensions (total diameter and length) were determined in tropical and subtropical plants of different growth forms with an emphasis upon lianas (woody vines). The paint infusion and compressed air methods were used on 38 species from 26 genera and 16 families in the most extensive survey of vessel length made to date. Within most stems there was a skewed frequency distribution of vessel lengths and diameter, with many short and narrow vessels and few long and wide ones. The longest vessel found (7.73 m) was in a stem of the liana (woody vine) Pithecoctenium crucigerum. Mean vessel length for 33 species of lianas was 0.38 m, average maximum length was 1.45 m. There was a statistically significant inter-species correlation between maximum vessel length and maximum vessel diameter. Among liana stems and among tree+shrub stems there were statistically significant correlations between stem xylem diameter and vessel dimensions. Lianas with different adaptations for climbing (tendril climbers, twiners, scramblers) were similar in their vessel dimensions except that scramblers tended to have shorter (but not narrower) vessels. Within one genus, Bauhinia, tendril climbing species had greater maximum vessel lengths and diameters than tree and shrub species. The few long and wide vessels of lianas are thought to hydraulically compensate for their narrow stem diameters. The many narrow and short vessels, which are present in the same liana stems, may provide a high resistance auxiliary transport system.  相似文献   

13.
This study investigated correlations among climatic variability, population age structure, and seedling survival of a dominant Sonoran Desert tree, Cercidium microphyllum (foothill paloverde), at Tucson, Arizona, USA. A major goal was to determine whether wet years promote seedling establishment and thereby determine population structure. Plant age was estimated from basal circumference for a sample of 980 living and dead trees in twelve 0.5-ha plots. Ages ranged from 1 to 181 years. Age frequency distribution showed that the population is in decline. Most (51.2%) of the 814 living trees were 40-80 years old; only 6.5% were younger than 20 years. The average age of the 166 dead trees was 78 years. Fifty-nine percent of dead trees were aged 60-100 years. Survival of newly emerged seedlings was monitored for 7 years in a 557-m2 permanent plot. Mean survival in the 1st year of life was 1.7%. Only 2 of 1,008 seedlings lived longer than 1 year. Length of survival was not correlated with rainfall. Residual regeneration, an index of the difference between predicted and observed cohort size, showed that regeneration was high during the first half of the twentieth century and poor after the mid-1950s. Trends in regeneration did not reflect interannual variation in seasonal temperature or rain before 1950, that is, in the years before urban warming. Taken together, the seedling study and the regeneration analysis suggest that local population dynamics reflect biotic factors to such an extent that population age structure might not always be a reliable clue to past climatic influences.  相似文献   

14.
The tree species composition, vertical stratification and patterns of spatial autocorrelation at the tree and quadrate (25 × 25 m) scales were studied in a natural mature PinuS sylvestris dominated forest in eastern Finland. For the analyses we mapped the locations and dimensions of trees taller than 10 m in a 9 ha (300 × 300 m) area, and within this area we mapped all trees taller than 0.3 m on a core plot of 4 ha (200 × 200 m). The overall tree size distribution was bimodal. the dominant layer and the understory forming the peak frequencies. Pinus sylvestris dominated the main canopy, together with scattered Betula pendula and Picea abies. Alnus incana, Populus tremula, Salix caprea, Sorbus aucuparia and Juniperus communis occurred only in the under- and middlestories. Autocorrelation analysis (semivarianee) of tree size variation revealed spatial patterns, which were strongly dependent on the size of trees included in the analysis. When all living trees, including the understory regeneration, were taken into account, the autocorrelation pattern ranged up to 35 m inter-tree distances, reflecting the spatial scale of understory regeneration patches. Competitive interaction among middle- and upperstory trees (height>10 m) had contrasting effects on autocorrelation pattern depending on spatial scale. At the fine scale, dominant trees suppressed their smaller close neighbors (asymmetric competition), which was shown as increased tree size variation at small inter-tree distances (<2 m). At slightly larger inter-tree distances, specifically among large trees of similar size, competition was more symmetrical, which resulted in decreased tree size variation at these inter-tree distances (3–4 m). This effect was seen most clearly in the dominant trees, there being a clear autocorrelation pattern in tree size up to inter-tree distances of ~4 m. At the quadrate scale (25 × 25 m) the analysis revealed high local variation in structural characteristics such as tree height diversity (THD), tree species diversity (H) and autocorrelation of tree height. The analysis suggests that naturally developed P. sylvestris forests exhibit complex small-scale patterns of structural heterogeneity and spatial autocorrelation in tree size. These patterns may be important for stand-scale habitat diversity and can have aggregated effects on ecosystem dynamics at larger spatial scales though their influence on the spread of disturbance and regeneration after disturbance.  相似文献   

15.
Grazing and ingestion rates of laboratory-born Thalia democraticaaggregates and Dolioletta gegenbauri gonozooids, phorozooidsand oozooids were determined while fed Isochrysis galbana (4–5µm diameter) alone or in combination with Peridinium trochoideum(16–18 µm diameter) at concentrations of 0.15–0.70mm3 x 1–1. Grazing rates (ml x zooid–1 x 24 h –1)ranged from 10 to 355, and at zooid weights greater than 5 µgcarbon were in order oozooid > gonozooid > aggregate.Grazing rates increased exponentially with increasing zooidweight. Weight-specific grazing rates (ml x µgC–1x 24 h–1) were independent of the four-fold initial foodconcentration. Mean weight-specific grazing rates increasedlinearly with increasing zooid weight for the aggregates andoozooids, but gonozooid mean rates were independent of zooidweight. Aggregate and gonozooid ingestion rates (106 µm3x zooid–1 x 24 h–1) ranged from 4 to 134 while oozooidrates ranged from 3 to 67. All ingestion rates were independentof the initial food concentration but increased linearly withincreasing zooid weight at similar rates. All mean weight-specificingestion rates (ml x µgC–1 x 24 h–1) wereindependent of zooid weight. The mean aggregate daily ration(µgC ingested x µg body C–1) was 59% and themean doliolid ration was 132%. Field studies indicate that normalconcentrations of D. gegenbauri in the Georgia Bight clear theirresident water volume (1 m3) in about 4 months, but that highlyconcentrated, swarm populations which occur along thermohalinefronts clear their resident water volume in less than 1 day. 1Current address: MacLaren Plansearch Ltd., P.O.Box 13250, sta.A.,St.John's, Nfld. A1B 4A5  相似文献   

16.
We used a stratified random sampling design to inventory the mangrove vegetation within the Zambezi River Delta, Mozambique, to provide a basis for estimating biomass pools. We used canopy height, derived from remote sensing data, to stratify the inventory area, and then applied a spatial decision support system to objectively allocate sample plots among five strata. Height and diameter were measured on overstory trees, saplings and standing dead trees in nested plots, and biomass was calculated using allometric equations. Each of the eight mangrove species occurring in Mozambique exist within the Delta. They are distributed in heterogeneous mixtures within each of the five canopy height classes, not reflecting obvious zonation. Overstory trees averaged approximately 2000 trees ha?1, and average basal area ranged from 14 to 41 m2 ha?1 among height classes. The composition of the saplings tended to mirror the overstory, and the diameter frequency distributions suggest all-aged stands. Above-ground biomass ranged from 111 to 483 Mg ha?1 with 95 % confidence interval generally within 15 % of the height class mean. Despite over 3000 trees ha?1 in the small-tree component, 92 % of the vegetation biomass is in the overstory live trees. The objective inventory design proved effective in estimating forest biomass within the 30,267 ha mangrove forest.  相似文献   

17.
Heartwood and sapwood development was studied in 18-year-old Eucalyptus globulus trees from pulpwood plantations with different spacings (3 × 2, 3 × 3, 4 × 3, 4 × 4 and 4 × 5 m), on cross-sectional discs taken at breast height. The trees possessed a large proportion of heartwood, on average 60% of the wood cross-sectional surface. Spacing was a statistically significant source of variation of heartwood area, which ranged between 99 and 206 cm2 for the closer (3 × 2) and wider (4 × 5) spacings, respectively. There was a positive and high statistical significant correlation between heartwood diameter and tree diameter (heartwood diameter = −0.272 + 0.616 dbh; r 2 = 0.77; P < 0.001), and larger trees contained more heartwood regardless of spacing. Heartwood proportion in cross-section remained practically constant between spacings but increased with tree diameter class: 55.1, 62.2, 65.0 and 69.5% for diameter at breast height classes <15, 15–20, 20–25 and >25 cm, respectively. The sapwood width did not depend on tree diameter growth and remained practically constant at an average of 18 mm (range 15–21 mm), but sapwood area showed a good linear regression with tree diameter. Therefore, tree growth enhancement factors, such as wide spacings, will induce formation of larger heartwoods that can negatively impact raw-material quality for pulping. The increase in heartwood in relation with tree dimensions should therefore be taken into account when designing forest management guidelines.  相似文献   

18.
We document spatial changes in species diversity, composition, community structure, and mortality of trees across a gradient of water availability in a tropical dry forest in western Mexico. This gradient occurs along the main stream of a small watershed of less than 1 km in length. Four 30 × 80 m plots were established systematically to include the driest (ridge top of the watershed) to the wettest sites (watershed bottom) within this watershed. All stems larger than 5 cm were identified, and measured for diameter and height. Dead stems larger than 5 cm were measured and classified as: a) found on live or dead trees, and b) standing (“snags”) or lying (“downlogs”) on the ground. The number of recorded species per plot declined from 73 to 44 species as water availability decreased. A decline in estimated total richness, and in Shannon-Wiener and Simpson diversity indices was also observed in the drier plots. Species composition strongly changed along the gradient, with the two ends of the gradient sharing only 11% of the species. Stem density and percentage of dead stems and trees increased in abundance and basal area from the wetter to the drier sites. Tree and stem size (basal area, height and stem diameter) showed the opposite trend. Nonetheless, total basal area of live trees was largest at the two end gradient locations and oscillated between 12.22 m2 ha−1 and 7.93 m2 ha−1. Proportion of snags increased towards the driest site (from 46 to 72%), while that of down logs decreased. Overall, our results suggest that small-scale gradients of water availability play a paramount role in the spatial organization of tree communities in seasonal tropical environments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Branch water exchange and total tree water uptake were measured in a mixed Norway spruce and Scots pine stand in central Sweden during the 1995 and 1996 growing seasons. Branch transpiration was scaled to canopy level on the basis of a branch conductance model, using vertical needle-area distributions obtained by destructive sampling. Comparison with total tree water uptake scaled to canopy level showed agreement within 10%, for periods when the canopy was not affected by climatically induced stress. Comparison of scaled fluxes on individual trees showed that measurements of transpiration at branch level provide information on the direct response of transpiration to variations in weather, and furthermore that the time-lag between transpiration and tree water uptake was as much as 3 h. The vertical needle-area distribution of Scots pine was similar to that found by other authors. Needle-area distribution on Norway spruce, which has not been described before, showed that it has its largest needle area at the top of the crown. Specific needle area varied considerably both within trees and between trees. For spruce, mean specific needle area (±SD) varied from 2.4±0.5 mm2 mg–1 at the top of the crown to 7.1±1.9 mm2 mg–1 at the base. Corresponding figures for Scots pine were 3.4±2.0 and 9.1±2.1. Received: 5 March 1999 / Accepted: 17 March 2000  相似文献   

20.
Iranian (Papaver bracteatum Lindl.) and opium poppy (P. somniferum L.) plantlets obtained from germinated seeds grown on a Murashige and Skoog basal medium (BM) readily manifest alkaloids. Temperature had a profound effect on growth and alkaloid production after 8 weeks in culture. Plantlets of poppy cultivars (cvs.) grew best at 18.5 and 20°C compared to 15 or 25°C. An alkaloid survey study with 24 Iranian and 21 opium poppy cvs. revealed that total morphinan alkaloids ranged from 0 to 6.55 mg/g dw. Prolific axillary branching was achieved from poppy cvs. by maintaining shoots on BM containing 1.0 mg/L N6‐benzyladenine and 0.01 mg/L α‐naphthalene acetic acid for an additional 16 weeks. The influence of vessel size on the growth response of established shoot clumps was determined by subculture in a variety of culture vessels for 8 weeks. The tested culture vessels included culture tubes (55 mm3 capacity (cap.)), babyfood jars (143 mm3 cap.), Magenta GA‐7 containers (365 mm3 cap.), and polycarbonate jars (1890 mm3 cap.) employing an in vitro hydroponics system (i.e. an automated plant culture system (APCS)). Highest growth rates occurred employing the APCS. The culture vessel capacity had a significant positive correlation on shoot length, fresh weight, number of leaves, and number of shoots. Shoot length, fresh weight, leaves, and shoots grown in the APCS exhibited increases of 1‐, 21.5‐, 7.8‐, and 8.3‐fold, respectively, compared to shoots grown in culture tubes. Higher culture growth rates that occurred in the larger‐size vessels were correlated with lower alkaloid production (mg alkaloids/g dw). However, the overall total alkaloids/vessel [(mg alkaloid/g dw)×g culture dw] increased because of greater biomass production per vessel. The alkaloid content was found to remain stable for shoots grown over a 6–month evaluation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号