首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atractyloside-insensitive accumulation of adenine nucleotides by rat liver mitochondria (as opposed to the exchange-diffusion catalysed by the adenine nucleotide translocase) has been measured by using the luciferin/luciferase assay as well as by measuring [14C]ATP uptake. In foetal rat liver mitochondria ATP is accumulated more rapidly than ADP, whereas AMP is not taken up. The uptake of ATP occurs against a concentration gradient, and the rate of ATP uptake is greater in foetal than in adult rat liver mitochondria. The accumulated [14C]ATP is shown to be present within the mitochondrial matrix space and is freely available to the adenine nucleotide translocase for exchange with ATP present in the external medium. The uptake is specific for ATP and ADP and is not inhibited by adenosine 5'-[beta gamma-imido] triphosphate, GTP, CTP, cyclic AMP or Pi, whereas dATP and AMP do inhibit ATP accumulation. The ATP accumulation is also inhibited by carbonyl cyanide m-chlorophenylhydrazone, KCN and mersalyl but is insensitive to atractyloside. The ATP uptake is concentration-dependent and exhibits Michaelis-Menten kinetics. The divalent cations Mg2+ and Ca2+ greatly enhance ATP accumulation, and the presence of hexokinase inhibits the uptake of ATP by foetal rat liver mitochondria. These latter effects provide an explanation for the low adenine nucleotide content of foetal rat liver mitochondria and the rapid increase that occurs in the mitochondrial adenine nucleotide concentration in vivo immediately after birth.  相似文献   

2.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

3.
Intramitochondrial Sr2+, similar to Ca2+, inhibits oxidative phosphorylation in intact rat-liver mitochondria. Both Ca2+ and Sr2+ also inhibit the hydrolytic activity of the ATPase in submitochondrial particles. Half-maximal inhibition of ATPase activity was attained at a concentration of 2.5 mM Ca2+ or 5.0 mM Sr2+ when the concentration of Mg2+ in the medium was 1.0 mM. The inhibition of ATPase activity by both cations was strongly decreased by increasing the Mg2+ concentration in the reaction medium. In addition, kinetical data and the determination of the concentration of MgATP, the substrate of the ATPase, in the presence of different concentrations of Ca2+ or Sr2+ strongly indicate that these cations inhibit ATP hydrolysis by competing with Mg2+ for the formation of MgATP. On the basis of a good agreement between these results with submitochondrial particles and the results of titrations of oxidative phosphorylation with carboxyatractyloside or oligomycin in mitochondria loaded with Sr2+ it can be concluded that intramitochondrial Ca2+ or Sr2+ inhibits oxidative phosphorylation in intact mitochondria by decreasing the availability of adenine nucleotides to both the ADP/ATP carrier and the ATP synthase.  相似文献   

4.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

5.
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP.  相似文献   

6.
This study evaluates the effect of Mg2+ on the extramitochondrial hydrolysis of ATP and ADP by human term placental mitochondria (HPM) and submitochondrial particle (SMP). Extramitochondrial ATPase and ADPase activities were evaluated in the presence or absence of K+, and different oxidizable substrates. Mg2+ increased both ATP and ADP hydrolysis according to the experimental conditions, and this stimulation was related to the mitochondrial intactness. The ADPase activity in intact mitochondria is 100-fold higher in presence of K+, succinate and 1mM Mg2+ while this activity is only increased by two-fold on the SMP when compared to the sample without Mg2+. It is clearly demonstrated that up-regulation of these enzyme activities occur in intact mitochondria and not on the enzyme itself. The results suggest that the regulation of ATP and ADP hydrolysis is complex, and Mg2+ plays an important role in the modulation of the extramitochondrial ATPase and ADPase activities in HPM  相似文献   

7.
Regulation of oxidation of [1-14C]palmitate in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin prepared by use of a Ficoll/sucrose density gradient. The mitochondrial preparation contained considerable Mg2+-ATPase activity, but was virtually free of contamination with nonmitochondrial fractions. Palmitate oxidation was inhibited by increasing the concentration of ATP in the assay system to near-physiological levels (2 mM), and the inhibition at 2 or 4 mM ATP was analyzed by comparing it with palmitate oxidation at near-maximal rates with low levels of ATP (0.5 or 1 mM). Inhibition was increased by the addition of ADP or by increasing the concentration of Mg2+ in the assay system, whereas inhibition was decreased by decreasing the concentration of mitochondrial protein or L-carnitine in the assay system. Increasing CoA concentration also had a deinhibitory effect. With 0.5 or 1 mM ATP, however, neither inhibition by added ADP nor protein concentration-dependent inhibition was observed, and the rate of oxidation was saturated with increasing concentrations of Mg2+, L-carnitine, or CoA. These results indicated that ADP was involved in the inhibition of high rates of palmitate oxidation in the presence of sufficient ATP and L-carnitine. The inhibitory effect of increasing the concentration of mitochondrial protein could be explained by the enhanced amounts of ADP present in the preparation; similarly, increased concentrations of Mg2+ would provide higher levels of ADP by stimulating the Mg2+-ATPase reaction. We discuss the possibility that the transport of ADP across the inner membrane of brain mitochondria is coupled to the inhibition of palmitate oxidation.  相似文献   

8.
hRAD51 lacks cooperative DNA-dependent ATPase activity and appears to function with 5-10-fold less Mg2+ compared to RecA. We have further explored the effect of Mg2+ on adenosine nucleotide binding, ATPase, and DNA strand exchange activities. hRAD51 was saturated with the poorly hydrolyzable analog of ATP, ATPgammaS, at approximately 0.08 mM Mg2+. In contrast, > 0.5 mM Mg2+ was required to saturate hRAD51 with ADP. We found ADP to be a significantly less effective competitive inhibitor of the hRAD51 ATPase at low Mg2+ concentrations (0.08 mM). Mg2+ did not appear to affect the ability of ATPgammaS to competitively inhibit the hRAD51 ATPase. Low Mg2+ (0.08-0.12 mM) enhanced the steady-state ATPase of hRAD51 while higher Mg2+ concentration (> 0.3 mM) was inhibitory. At low Mg2+, hRAD51 appeared capable of nearly complete hydrolysis of available ATP, suggesting a lack of ADP product inhibition. There was a strong correlation between the amount of Mg2+ required for stable ADP binding and the inhibition of hRad51 strand exchange activity. Simultaneous inclusion of exogenous ATP and chelation of Mg2+ with EDTA significantly enhanced ADP-->ATP exchange by hRAD51. These studies are consistent with the hypothesis that Mg2+ influences the discrimination and release of ADP, which may sequentially impose an important regulatory step in the hRAD51 ATPase cycle.  相似文献   

9.
(Ca2+ + Mg2+)-stimulated ATPase of human red cell membranes as a function of ATP concentration was measured at fixed Ca2+ concentration and at two different but constant Mg2+ concentrations. Under the assumption that free ATP rather than Mg-ATP is the substrate, a value for Km (for ATP) of 1-2 micron is found which is in good agreement with the value obtained in the phosphorylation reaction by A.F. Rega and P.J. Garrahan (1975. J. Membrane Biol. 22:313). Mg2+ increases both the maximal rate and the affinity for ATP, whereas Ca2+ increases the maximal rate without affecting Km for ATP. As a by-product of these experiments, it was shown that after thorough removal of intracellular proteins the adenylate kinase reaction at approximately 1 mM substrate concentration is several times faster than maximal rate of (Ca2+ + Mg2+)ATPase in red cell membranes.  相似文献   

10.
Dephosphorylation of [32P]phosphoenzyme of bovine brain Na+,K+-stimulated ATP phosphohydrolase (EC 3.6.1.3), labelled by [gamma-32P]ATP, was investigated at 21 degrees C by means of a rapid-mixing technique. On addition of a high concentration of KCl (10 mM) to [32P]phosphoenzyme at steady state in the presence of Mg2+ and Na+, very rapid dephosphorylation was obtained. Simultaneously, the amount of [32P]orthophosphate increased at about the same rate. It was concluded that this K+-stimulated dephosphorylation and liberation of [32P]orthophosphate from the [32P]phosphoenzyme was rapid enough to participate in the Na+,K+-stimulated hydrolysis of ATP. In order to study the dephosphorylation in absence of continuing 32P-labelling, excess unlabelled ATP or a chelator of Mg2+ was added. Simultaneous addition of a high concentration of KCl to the [32P]phosphoenzyme formed in the presence of Mg2+ and Na+ but in the absence of K+, resulted in an initial very rapid phase and a subsequent slower phase of dephosphorylation. With KCl also initially present in the incubation medium, only the slow phase was observed. The slow phase of dephosphorylation also seemed to be sufficiently rapid to participate in the Na+, K+-stimulated ATPase reaction. On addition of a high concentration of ADP (5 mM) to [32P]phosphoenzyme formed in the presence of Mg2+ and Na+, an initial comparatively rapid, and later slow phase of dephosphorylation were detected. This gave further support for different forms of phosphoenzyme. Approximate concentrations of these forms, in the absence and presence of KCl, were estimated by extrapolation and the turnover of these forms was calculated. The nature of the kinetically different components of phosphoenzyme and their role in the Na+, K+-stimulated ATPase reaction is discussed.  相似文献   

11.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

12.
1. The ATPase activity of insect mitochondria has been investigated. A comparison was made to determine the distribution and nature of such activity in other isolated fractions of the house fly, Musca domestica L. 2. The ATPase in insect mitochondria is specific in that orthophosphate can be cleaved only from ATP. The Michaelis-Menten constant K(8) = 2.78 x 10(-3)M and V(max.) = 76 micrograms P min.(-1) mg.(-1) dry weight. 3. Mg(++) and Mn(++) activate this enzymatic reaction in mitochondria, but Ca(++) does not. The extent of activation is 60 per cent with the optimal concentration 6 x 10(-4)M. Experiments with combinations of Mg(++) and Mn(++) show that either ion can replace the other and that the effects are additive, depending solely on the final concentration of the combination. Concentrations of Mg, Mn, or Ca ions higher than 6 x 10(-3)M inhibit the enzyme. 4. Fluoride does not inhibit the ATPase of insect mitochondria, whereas azide and chloromercuribenzoate do. The per cent inhibition depends on the concentration of inhibitor. 5. Finely dispersed mitochondrial particles have much greater ATPase activity than intact mitochondria. The possible relationship of this observation to latent ATPase is considered. 6. A magnesium-activated adenylate kinase is present in these mitochondria. The liberated orthophosphate, derived from ADP, is the result of the activity of adenylate kinase followed by the specific ATPase. 7. ATP can be dephosphorylated by enzymes found in the muscle fibrils, and in a "soluble" fraction, as well as in mitochondria. The fibrillar ATPase is Ca(++)-activated. The "soluble" fraction, however, like the mitochondria, is Mg(++)-activated. The "soluble" ATP dephosphorylation mechanism is distinguished from the mitochondrial ATPase in that it is inhibited by fluoride. 8. The "soluble" fraction also contains a magnesium-activated inorganic pyrophosphatase. Fluoride completely inhibits this enzymatic reaction. 9. The possible mechanism of ATP dephosphorylation in the "soluble" fraction is discussed.  相似文献   

13.
The properties of anion-sensitive ATPase of rat heart mitochondria were studied. Na2CO3, NaHCO3 and Na2SO3 stimualted ATPase activity by 69, 41 and 110%, respectively. Azide, tiocinate and perchlorate inhibited bicarbonate-stimulated ATPase. Bivalent cations increased ATPase activity in such a sequence: Zn2+ greater than or equal to Cd2+ greater than or equal to Co2+ greater than or equal to Mg2+ greater than or equal to Mn2+ greater than Ni2+. In the presence of bicarbonate and sulfite. ATPase activity was maximally stimulated with magnesium. Ni2+ and Ca2+-ions inhibited Mg2+-dependent activity of bicarbonate-stimulated ATPase. AMP uninhibited ATPase activity. The 4 mM concentration of ADP inhibited activity of HCO-3-ATPase. Activity of ATPases decreased at lower temperatures. The properties of anion-sensitive ATPase of rat heart mitochondria and that of HCO-2-ATPase of other cells are discussed.  相似文献   

14.
Sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle were solubilized with a high concentration of dodecyl octaethyleneglycol monoether (C12E8) and the kinetic properties of the Ca2+,Mg2+-dependent ATPase [EC 3.6.1.3] were studied. The following results were obtained: 1. SR ATPase solubilized in C12E8 retains high ability to form phosphoenzyme ([EP] = 4--5 mol/10(6) g protein) for at least two days in the presence of 5 mM Ca2+, 0.5 M KCl, and 20% glycerol at pH 7.55. 2. The ATPase activity was dependent on both Mg2+ and Ca2+. However, the rate of E32P decay after the addition of unlabeled ATP was independent of Mg2+. 3. Most of the EP formed in the absence of Mg2+ was capable of reacting with ADP to form ATP in the backward reaction. However, in the presence of 5 mM Mg2+, the amount of ATP formed was markedly reduced without loss of the reactivity of the EP with ADP. 4. The removal of C12E8 from the ATPase by the use of Bio-Beads resulted in the full restoration of the Mg2+ dependency of the EP decomposition. 5. These results strongly suggest that in the case of SR solubilized with a high concentration of C12E8 the decomposition of phosphoenzyme is Mg2+ independent and ATP is mainly hydrolyzed through Mg2+-dependent decomposition of an enzyme-ATP complex, which is in equilibrium with phosphoenzyme and ADP.  相似文献   

15.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

16.
Comparison between the effects on various rat liver mitochondrial functions of ethacrynate, a thiol reagent inhibitor of oxidative phosphorylations [3, 4] and those of dihydroethacrynate its saturated derivative which is not a thiol reagent, has been performed. Both, ethacrynate and dihydroethacrynate increase oxygen consumption by mitochondria in state 4 (succinate as substrate) in a concentration dependent way (from 1 to 5 X 10(-4) M EA or DHEA). This activation is followed, only with ethacrynate, by an inhibition appearing sooner with higher concentrations. After preincubation or mitochondria with ethacrynate (1 to 5 X 10(-4) M), the stimulation of respiration by (ADP + Pi) is completely inhibited whereas it is only weakly affected by dihydroethacrynate at the same concentrations. Ethacrynate and dihydroethacrynate provoke variations of intramitochondrial Mg2+ and K+ levels which need energy from the respiratory chain. These are affected by Pi or (Pi + ADP) in a different way with ethacrynate and with dihydroethacrynate. After preincubation with mitochondria, ethacrynate and to a smaller extent dihydroethacrynate, inhibit partially ADP translocation; ADP increases the inhibitory effect of EA on translocation and not that of dihydroethacrynate. Ethacrynate increases the oligomycin sensitive ATPase activity and dihydroethacrynate still more. After a ten minutes preincubation with mitochondria, ethacrynate and dihydroethacrynate hardly affect the 2.4 DNP stimulated ATPase activity. Preincubation with succinate or ADP strongly increases the ethacrynate inhibition whereas it decreases dihydroethacrynate inhibition. Ethacrynate and dihydroethacrynate do not affect the efflux of Pi produced by ATP hydrolysis but ethacrynate enforces the inhibitory effect of mersalyl (Mg2+ containing medium). After ten minutes of preincubation with mitochondria, ethacrynate binds 25 nmoles of -SH/mg protein (DTNB titration) and dihydroethacrynate has no effect. These results show an effect of ethacrynate on two types of thiols linked with energy conservation mechanisms and ADP translocation. These thiols could be unmasked or made accessible by conformational modifications of the inner membrane upon energization or addition of ADP.  相似文献   

17.
Joseph D. Robinson 《BBA》1976,440(3):711-722
Na+-dependent ADP/ATP exchange activity, of a (Na+ + K+)-dependent ATPase preparation from eel electric organ, was measured in terms of the incorporation of 14C into ATP during incubations with unlabeled ATP and [14C]ADP. Estimates of initial rates of exchange were possible by keeping changes in nucleotide concentrations, from both exchange and extraneous hydrolytic processes, to less than 10%. Under these conditions, increases in MgCl2 concentration, from 0.2 to 3 mM, generally inhibited this exchange activity. The concentrations of free Mg2+, Mg · ATP, and Mg · ADP present, with a range of MgCl2, ATP, and ADP concentrations, were calculated from measured dissociation constants. Inhibition was associated with Mg · ATP as well as with Mg2+, at concentrations from 0.4 to 1 mM (Mg · ADP, in the same concentration range, probably inhibited also). The affinity of the enzyme for these inhibitors is in fair correspondence with demonstrated affinities for Mg2+, Mg · ATP, and Mg · ADP at low affinity substrate sites, measured kinetically. These observations are considered in terms of a dimeric enzyme with high and low affinity substrates sites: ADP/ATP exchange being catalyzed at the high affinity sites, with inhibition occurring through occupancy by Mg2+, Mg · ATP, or Mg · ADP, of the low affinity sites, thereby pulling the reaction process away from those steps involved in exchange.  相似文献   

18.
The F1 moiety of the rat liver mitochondrial ATP synthase/ATPase complex contains as isolated 2 mol Mg2+/mol F1, 1 mol of which is nonexchangeable and the other which is exchangeable (N. Williams, J. Hullihen, and P.L. Pedersen, (1987) Biochemistry 26, 162-169). In addition, the enzyme binds 1 mol ADP/mol F1 and 3 mol AMP.PNP, the latter of which can bind in complex formation with divalent cation and displace the Mg2+ at the exchangeable site. Thus, in terms of ligand binding sites the fully loaded rat liver F1 complex contains 3 mol MgAMP.PNP, 1 mol ADP, and 1 mol Mg2+. In this study we have used several metal ATP complexes or analogs thereof to gain further insight into the ligand binding domains of rat liver F1 and the mechanism by which it catalyzes ATP hydrolysis in soluble and membrane bound form. Studies with LaATP confirmed that MgATP is the most likely substrate for rat liver F1, and provided evidence that the enzyme may contain additional Mg2+ binding sites, undetected in previous studies of F1-ATPases, that are required for catalytic activity. Thus, F1 containing the thermodynamically stable LaATP complex in place of MgATP requires added Mg2+ to induce ATP hydrolysis. As Mg2+ cannot readily displace La2+ under these conditions there appears to be a catalytically important class of Mg2+ binding sites on rat liver F1, distinct from the nonexchangeable Mg2+ site and the sites involved in binding MgATP. Additional studies carried out with exchange inert metal-nucleotide complexes involving rhodium and the Mg2+ and Cd2+ complexes of ATP beta S and ATP alpha S imply that the rate-limiting step in the ATPase reaction pathway occurs subsequent to the P gamma-O-P beta bond cleavage steps, perhaps at the level of Mg(ADP)(Pi) hydrolysis or MgADP release. Evidence is presented that Mg2+ remains coordinated to the leaving group of the reaction, i.e., the beta phosphoryl group. Finally, in contrast to soluble F1, F1 bound to F0 in the inner mitochondrial membrane failed to discriminate between the Mg2+ complexes of the ATP beta S isomers. This indicates that a fundamental difference may exist between the catalytic or kinetic mechanism of F1 and the more physiologically intact F0F1 complex.  相似文献   

19.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

20.
1. Oligomycin-insensitive ATPase (ATP phosphohydrolase, EC 3.6.1.3) was purified from brown adipose tissue mitochondria. It had a specific activity of 50 units/mg which could be increased up to 85 units/mg by KHCO3. The isolated enzyme represented less than 0.5% of the initial membrane proteins.2. The enzyme had a molecular weight equal to beef heart ATPase and was composed of five subunits with molecular weights of 56 200, 54 300, 33 500, 13 400 and 9500 respectively. 3. Isolated ATPase was labile while cold and was activated by the divalent cations Mn2+, Mg2+, Co2+ and Cd2+. The optimum ATP/Mg2+ ratio found was 1.58 and the enzyme had a maximum activity at pH 8.5; the Km was 220 micrometer. 4. The ATPase activity was 55% inhibited by aurovertin. The isolated enzyme enhanced the fluorescence of aurovertin, quenched by ATP and Mg2+ and enhanced by ADP. 5. Oligomycin sensitivity and cold stability of isolated ATPase was restored by its reconstitution with both brown adipose tissue and beef heart particles depleted of ATPase. 6. The results presented demonstrate that the low ATPase activity of brown adipose tissue mitochondria is due to a reduced content of ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号