首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among 82 epiphytic fitness mutants of a Pseudomonas syringae pv. syringae strain that were characterized in a previous study, 4 mutants were particularly intolerant of the stresses associated with dry leaf surfaces. These four mutants each exhibited distinctive behaviors when inoculated onto and into plant leaves. For example, while none showed measurable growth on dry potato leaf surfaces, they grew to different population sizes in the intercellular spaces of bean leaves and on dry bean leaf surfaces, and one mutant appeared incapable of growth in both environments although it grew well on moist bean leaves. The presence of the parental strain did not influence the survival of the mutants immediately following exposure of leaves to dry, high-light incubation conditions, suggesting that the reduced survival of the mutants did not result from an inability to produce extracellular factors in planta. On moist bean leaves that were colonized by either a mutant or the wild type, the proportion of the total epiphytic population that was located in sites protected from a surface sterilant was smaller for the mutants than for the wild type, indicating that the mutants were reduced in their ability to locate, multiply in, and/or survive in such protected sites. This reduced ability was only one of possibly several factors contributing to the reduced epiphytic fitness of each mutant. Their reduced fitness was not specific to the host plant bean, since they also exhibited reduced fitness on the nonhost plant potato; the functions altered in these strains are thus of interest for their contribution to the general fitness of bacterial epiphytes.  相似文献   

2.
In order to identify novel traits involved in epiphytic colonization, a technique for the rapid identification of bacterial mutants with quantitatively different population sizes in a natural habitat based on measurements of ice nucleation activity was developed. The threshold freezing temperatures of leaves harboring different numbers of cells of ice nucleation-active Pseudomonas syringae B728a differed substantially. While few leaves containing less than about 106 cells per g (fresh weight) froze at assay temperatures of -2.75°C or higher, nearly all leaves froze at these temperatures when population sizes of this strain increased to about 107 cells per g (fresh weight). Presumptive epiphytic fitness mutants could readily be identified as strains which initiated freezing in fewer leaves than did other strains within a given experiment. Most Tn5-induced mutants of strain B728a which conferred a low frequency of ice nucleation on inoculated bean leaves generally had a smaller population size than the parental strain at the time of the leaf freezing assay. The leaf freezing assay was capable of differentiating samples which varied by approximately three- to fivefold in mean bacterial population size.  相似文献   

3.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

4.
Random Tn5 mutagenesis was used to identify genes ir. Pseudomonas syringae which contribute to epiphytic fitness. Mutants were selected on the basis of deficiencies in epiphytic growth or survival on plants rather than deficiencies in predetermined phenotypes exhibited in culture. A sample freezing procedure was used to measure the population sizes of 5,300 mutants of P. syringae exposed to alternating wet and dry conditions on bean leaves in growth chambers. Eighty-two mutants exhibited reduced population sizes. Of these mutants, over half exhibited a reduced ability to survive the stresses associated with dry leaves, while others grew more slowly or attained reduced stationary-phase population sizes on leaves. While some epiphytic fitness mutants were altered in phenotypes that could be measured in culture, many mutants were not altered in any in vitro phenotype examined. Only three of the epiphytic fitness mutants were auxotrophs, and none had catabolic deficiencies for any of 31 organic compounds tested. Other mutants that exhibited reductions in one or more of the following were identified: motility, osmotolerance, desiccation tolerance, growth rate in batch culture, and extracellular polysaccharide production. All of the mutants retained the abilities to produce disease symptoms on the compatible host plant, bean, to incite a hypersensitive response on the non-host plant, tobacco, and to produce a fluorescent pyoverdine siderophore.  相似文献   

5.
The epiphytic fitness of four Tn5 mutants of Pseudomonas syringae that exhibited reduced epiphytic fitness in the laboratory was evaluated under field conditions. The mutants differed more from the parental strain under field conditions than under laboratory conditions in their survival immediately following inoculation onto bean leaves and in the size of the epiphytic populations that they established, demonstrating that their fitness was reduced more under field conditions than in the laboratory. Under both conditions, the four mutants exhibited distinctive behaviors. One mutant exhibited particularly large population decreases and short half-lives following inoculation but grew epiphytically at near-wild-type rates, while the others exhibited reduced survival only in the warmest, driest conditions tested and grew epiphytically at reduced rates or, in the case of one mutant, not at all. The presence of the parental strain, B728a, did not influence the survival or growth of three of the mutants under field conditions; however, one mutant, an auxotroph, established larger populations in the presence of B728a than in its absence, possibly because of cross-feeding by B728a in planta. Experiments with B728a demonstrated that established epiphytic populations survived exposure of leaves to dry conditions better than newly inoculated cells did and that epiphytic survival was not dependent on the cell density in the inoculum. Three of the mutants behaved similarly to two nonpathogenic strains of P. syringae, suggesting that the mutants may be altered in traits that are missing or poorly expressed in naturally occurring nonpathogenic epiphytes.  相似文献   

6.
Erwinia herbicola 299R produces large quantities of indole-3-acetic acid (IAA) in culture media supplemented with l-tryptophan. To assess the contribution of IAA production to epiphytic fitness, the population dynamics of the wild-type strain and an IAA-deficient mutant of this strain on leaves were studied. Strain 299XYLE, an isogenic IAA-deficient mutant of strain 299R, was constructed by insertional interruption of the indolepyruvate decarboxylase gene of strain 299R with the xylE gene, which encodes a 2,3-catechol dioxygenase from Pseudomonas putida mt-2. The xylE gene provided a useful marker for monitoring populations of the IAA-deficient mutant strain in mixed populations with the parental strain in ecological studies. A root bioassay for IAA, in which strain 299XYLE inhibited significantly less root elongation than strain 299R, provided evidence that E. herbicola produces IAA on plant surfaces in amounts sufficient to affect the physiology of its host and that IAA production in strain 299R is not solely an in vitro phenomenon. The epiphytic fitness of strains 299R and 299XYLE was evaluated in greenhouse and field studies by analysis of changes in the ratio of the population sizes of these two strains after inoculation as mixtures onto plants. Populations of the parental strain increased to approximately twice those of the IAA-deficient mutant strain after coinoculation in a proportion of 1:1 onto bean plants in the greenhouse and onto pear flowers in field studies. In all experiments, the ratio of the population sizes of strain 299R and 299XYLE increased during periods of active growth on plant tissue but not when population sizes were not increasing with time.

Many plant-associated bacteria have the ability to produce the plant growth regulator indole-3-acetic acid (IAA) (5, 9, 25, 33). IAA is involved in diseases caused by gall- and knot-forming bacterial species (33); however, its role in other bacteria remains undefined. It is unclear whether these bacteria produce IAA during colonization of plant surfaces and whether this metabolite is beneficial to the bacteria during their growth and survival in the phyllosphere. The production of IAA may enable bacteria to detoxify tryptophan analogues present on plant surfaces (15), to downregulate genes involved in plant defense responses (33), or to inhibit the development of the hypersensitive response by plants (26). We recently demonstrated that the ipdC gene, which encodes the indolepyruvate decarboxylase of Erwinia herbicola (Pantoea agglomerans) 299R and which is involved in the indolepyruvate pathway for IAA synthesis in this epiphytic strain (2), is osmoresponsive and plant inducible (3). We hypothesized that the secretion of IAA may modify the microhabitat of epiphytic bacteria by increasing nutrient leakage from plant cells; enhanced nutrient availability may better enable IAA-producing bacteria to colonize the phyllosphere and may contribute to their epiphytic fitness (1).Few studies have attempted to determine the ecological significance of IAA production in pathogenic bacteria. Varvaro and Martella (31) showed that IAA-deficient mutants of Pseudomonas syringae pv. savastanoi, obtained by selection for resistance to α-methyltryptophan, were reduced in their ability to colonize and survive on olive leaf surfaces. The survival of an α-methyltryptophan-resistant IAA-deficient mutant of P. syringae pv. savastanoi in knots also was affected, its population declining more rapidly than that of the parental strain when inoculated alone into oleander leaf tissue (28). The importance of IAA production in bacterial colonization of bean leaves was also tested with the brown spot pathogen P. syringae pv. syringae and an IAA-deficient mutant derived by insertional mutagenesis (21). Although no difference in the survival of the parental and mutant strains on bean leaves was observed in the greenhouse, a small difference in their behavior was apparent in experiments conducted in a mist chamber (21). There have been no studies of the role of IAA production in plant-associated bacteria that do not cause disease.IAA biosynthesis is not essential for bacterial growth and survival, since IAA-deficient mutants grow as well as their IAA-producing parental strain in vitro (2, 29). Large differences in the epiphytic behaviors of IAA-producing bacteria and isogenic IAA-deficient mutants consequently would not be expected. Even small contributions of IAA production to epiphytic fitness could account for the common presence of this phenotype in epiphytic bacteria (19). Measurements of changes in the ratio of two strains following coinoculation, a common approach in ecological studies, can allow the detection of even small differences in the competitive behaviors of two organisms. This approach can detect much smaller differences in behavior between closely related species than comparison of populations of these species when present singly in separate habitats (16). In this study, we tested the role of IAA in the epiphytic fitness of E. herbicola by comparing the relative changes in the population sizes of the parental and IAA-deficient mutant strains with time after their inoculation onto plants in both controlled and field environments.  相似文献   

7.
The ability of Pseudomonas syringae pv. syringae to use nitrate as a nitrogen source in culture and on leaves was assessed. Substantial amounts of leaf surface nitrate were detected directly and by use of a bioreporter of nitrate on bean plants grown with a variety of nitrogen sources. While a nitrate reductase mutant, P. syringae ΔnasB, exhibited greatly reduced growth in culture with nitrate as the sole nitrogen source, it exhibited population sizes similar to those of the wild-type strain on leaves. However, the growth of the ΔnasB mutant was much less than that of the wild-type strain when cultured in bean leaf washings supplemented with glucose, suggesting that P. syringae experiences primarily carbon-limited and only secondarily nitrogen-limited growth on bean leaves. Only a small proportion of the cells of a green fluorescent protein (GFP)-based P. syringae nitrate reductase bioreporter, LK2(pOTNas4), exhibited fluorescence on leaves. This suggests that only a subset of cells experience high nitrate levels or that nitrate assimilation is repressed by the presence of ammonium or other nitrogenous compounds in many leaf locations. While only a subpopulation of P. syringae consumes nitrate at a given time on the leaves, the ability of those cells to consume this resource would be strongly beneficial to those cells, especially in environments in which nitrate is the most abundant form of nitrogen.  相似文献   

8.
The ability of several Bacillus thuringiensis strains to colonize plant surfaces was assessed and compared with that of more common epiphytic bacteria. While all B. thuringiensis strains multiplied to some extent after inoculation on bean plants, their maximum epiphytic population sizes of 106 cfu/g of leaf were always much less than that achieved by other resident epiphytic bacteria or an epiphytically fit Pseudomonas fluorescens strain, which attained population sizes of about 107 cfu/g of leaf. However B. thuringiensis strains exhibited much less decline in culturable populations upon imposition of desiccation stress than did other resident bacteria or an inoculated P. fluorescens strain, and most cells were in a spore form soon after inoculation onto plants. B. thuringiensis strains produced commercially for insect control were not less epiphytically fit than strains recently isolated from leaf surfaces. The growth of B. thuringiensis was not affected by the presence of Pseudomonas syringae when co-inoculated, and vice versa. B. thuringiensis strains harboring a green fluorescent protein marker gene did not form large cell aggregates, were not associated with other epiphytic bacteria, and were not found associated with leaf structures, such as stomata, trichomes, or veins when directly observed on bean leaves by epifluorescent microscopy. Thus, B. thuringiensis appears unable to grow extensively on leaves and its common isolation from plants may reflect immigration from more abundant reservoirs elsewhere.  相似文献   

9.
The invasion and exclusion abilities of coexisting Pseudomonas syringae strains were quantified on leaves. Twenty-nine P. syringae strains were inoculated onto plants in 107 pairwise combinations. All pairs were duplicated so that each strain was inoculated both first as an antagonist strain (day 0) and second as a challenge strain (day 3). The population size of each strain in a mixture was quantified on day 6 following incubation under moist conditions. For P. syringae strains, the presence of an established population often significantly reduced the growth of subsequently arriving challenge strains on the leaf surface. Invasion and exclusion abilities, quantified by contrasting population sizes of challenge strains in the presence and in the absence of another strain, varied significantly among P. syringae strains and were partly a function of the particular strain pair. The population size of a strain when present alone on a leaf was not predictive of invasion or exclusion ability. Successful invaders were significantly less likely to exclude challenge populations than were nonsuccessful invaders. Population sizes of successful excluders were negatively correlated with population sizes of coexisting challenge strains, while population sizes of successful invaders were positively correlated with those of coexisting antagonist strains. The patterns of interaction among coexisting strains suggest mechanisms for successful invasion and exclusion among P. syringae strains on leaves.  相似文献   

10.
The N-acyl homoserine lactone (AHL)-mediated quorum-sensing system in the phytopathogen Pseudomonas syringae pv. syringae requires the AHL synthase AhlI and the regulator AhlR, and is additionally subject to regulation by AefR. The contribution of quorum sensing to the expression of a variety of traits expected to be involved in epiphytic fitness and virulence of P syringae were examined. Both an aefR- mutant and an ahlI- ahlR- double mutant, deficient in AHL production, were significantly impaired in alginate production and had an increased susceptibility to hydrogen peroxide compared with the wild-type strain. These mutants were hypermotile in culture, invaded leaves more rapidly, and caused an increased incidence of brown spot lesions on bean leaves after a 48-h moist incubation. Interestingly, an aefR- mutant was both the most motile and virulent. Like the wild-type strain, the AHL-deficient mutant strains incited water-soaked lesions on bean pods. However, lesions caused by an ahlI- ahlR- double mutant were larger, whereas those incited by an aefR- mutant were smaller. In contrast, tissue maceration of pods, which occurs at a later stage of infection, was completely abolished in the AHL-deficient mutants. Both the incidence of disease and in planta growth of P syringae pv. tabaci were greatly reduced in transgenic tobacco plants that produced AHL compared with wild-type plants. These results demonstrate that quorum sensing in E syringae regulates traits that contribute to epiphytic fitness as well as to distinct stages of disease development during plant infection.  相似文献   

11.
De Wit replacement series were used to study competitive interactions between epiphytic Ice+Pseudomonas syringae strains and the biological frost control agents Ice-P. syringae TLP2del1 and Pseudomonas fluorescens A506. Mixtures containing two strains in different proportions but at a constant total population size were inoculated onto potato leaves. The population sizes of each strain and the total population size were determined when the community had reached equilibrium. A near-isogenic P. syringae strain pair exhibited an interaction similar to that expected for strains competing equally for limiting environmental resources. Replacement series with nonisogenic Ice+ and Ice-P. syringae strain pairs suggested that these strains competed for limiting resources according to their relative competitive abilities. There was no evidence of any niche differentiation between the Ice+P. syringae strains and the Ice-P. syringae strain. The growth responses of epiphytes following addition of nutrients to the phyllosphere indicated that the epiphytic P. syringae populations were nutrient limited and that, under growth chamber conditions, the populations were more limited by the availability of carbon than by the availability of nitrogen. Determination of in vitro carbon source utilization profiles provided further evidence for the lack of niche differentiation between the Ice+ and the Ice-P. syringae strains. Niche overlap indices calculated for the Ice+P. syringae strains with respect to Ice-P. syringae TLP2del1 were uniformly high, indicating ecological similarity, and were consistent with the observed low level of coexistence. The biological frost control agent P. fluorescens A506 replaced P. syringae. This was correlated with a high degree of niche overlap between these species.  相似文献   

12.
To construct differentially-marked derivatives of our model wild-type strain, Pseudomonas syringae pv. syringae B728a (a causal agent of bacterial brown spot disease in snap bean plants), for field experiments, we selected a site in the gacS-cysM intergenic region for site-directed insertion of antibiotic resistance marker cassettes. In each of three field experiments, population sizes of the site-directed chromosomally marked B728a derivatives in association with snap bean plants were not significantly different from that of the wild-type strain. Inserts of up to 7 kb of DNA in the intergenic region did not measurably affect fitness of B728a in the field. The site is useful for site-directed genomic insertions of single copies of genes of interest.  相似文献   

13.
The efficacy of a bacterial strain as a biocontrol agent in the field may be related to the ecological similarity between the biocontrol agent and the target pathogen. Therefore, a number of different Pseudomonas syringae strains were evaluated for their antagonistic activities in vitro (agar-diffusion assay) and in planta (greenhouse assay) against the target pathogen, Pseudomonas syringae pv. glycinea. Six strains of five different pathovars were found to be antagonistic in vitro as well as in planta. The epiphytic fitness of the antagonistic Pseudomonas syringae strain 22d/93 and its two antibiotic-resistant mutants were examined on soybean plants in the fields. After adaptation the parental strain and its mutants had the ability to establish and maintain large epiphytic populations (about 106 cfu/g FW) over the whole growing season after a single spray inoculation. The epiphytic behaviors of the mutants and the parent were not significantly different. The introduced bacteria did not influence the total bacterial population size. When the antagonist was coinoculated with the pathogen, the development of the pathogen was significantly reduced during the whole growing season. When the antagonistic strain was inoculated 4 weeks in advance of the pathogen, this antagonistic effect could be markedly enhanced. The final population size of the pathogen reached just 104 cfu/g FW and was significantly reduced to 0.12% compared to the pathogen alone. This study demonstrates that biological control of foliar pathogens through colonization of the host plants with near isogenic or ecologically similar antagonistical strains seems to be a realistic goal.  相似文献   

14.
The effect of motility on the competitive success of Rhizobium meliloti in nodule production was investigated. A motile strain formed more nodules than expected when mixed at various unfavorable ratios with either flagellated or nonflagellated nonmotile derivatives. We conclude that motility confers a selective advantage on rhizobia when competing with nonmotile strains.  相似文献   

15.
The relationship between nutrients leached onto the leaf surface and the colonization of plants by bacteria was studied by measuring both the abundance of simple sugars and the growth of Pseudomonas fluorescens on individual bean leaves. Data obtained in this study indicate that the population size of epiphytic bacteria on plants under environmentally favorable conditions is limited by the abundance of carbon sources on the leaf surface. Sugars were depleted during the course of bacterial colonization of the leaf surface. However, about 20% of readily utilizable sugar, such as glucose, present initially remained on fully colonized leaves. The amounts of sugars on a population of apparently identical individual bean leaves before and after microbial colonization exhibited a similar right-hand-skewed distribution and varied by about 25-fold from leaf to leaf. Total bacterial population sizes on inoculated leaves under conditions favorable for bacterial growth also varied by about 29-fold and exhibited a right-hand-skewed distribution. The amounts of sugars on leaves of different plant species were directly correlated with the maximum bacterial population sizes that could be attained on those species. The capacity of bacteria to deplete leaf surface sugars varied greatly among plant species. Plants capable of supporting high bacterial population sizes were proportionally more depleted of leaf surface nutrients than plants with low epiphytic populations. Even in species with a high epiphytic bacterial population, a substantial amount of sugar remained after bacterial colonization. It is hypothesized that residual sugars on colonized leaves may not be physically accessible to the bacteria due to limitations in wettability and/or diffusion of nutrients across the leaf surface.  相似文献   

16.
Pseudomonas syringae inocula containing cell concentrations ranging from 105 to 109 cells per ml were applied to the primary leaves of bean plants. The plants were incubated under conditions of high temperature and illumination and low relative humidity. Bacterial mortality rates and the proportional population decline of the inoculum were lowest at the highest inoculum concentrations. Addition of a high concentration of heat-killed cells to the inoculum containing a low concentration of viable cells significantly reduced both the mortality rate and the proportional population decline of the viable cells. The mechanisms underlying this density-dependent mortality may include cooperative protective effects of extracellular factors, such as bacterial extracellular polysaccharides, and physical protection by neighboring cells. Although epiphytic populations derived from inoculum concentrations of 108 or 109 cells per ml tended toward 106 CFU/g, the presumed carrying capacity of the leaf, populations derived from lower inoculum concentrations never achieved this carrying capacity. Assuming that epiphytic populations of P. syringae reside in discrete protected sites, our results suggest that at low inoculum concentrations, following a period of environmental stress, the number of viable cells may have dropped to zero in some sites; hence, the carrying capacity of the leaf could not be achieved.  相似文献   

17.
Motility as an intestinal colonization factor for Campylobacter jejuni   总被引:44,自引:0,他引:44  
The colonization of the intestinal tract of suckling mice by Campylobacter jejuni was examined by orally challenging the mice with a wild-type strain and several nonmotile mutant strains which were isolated after treating the wild-type strain with mutagens. The wild-type strain had colonized the lower portion of the small intestine, the caecum and the colon 2 d after inoculation. Two nonmotile strains, one of which (M8) had lost all the flagellar structure including the filament, the hook and the basal structure, and the other (M1) which had lost only the filament region, were both cleared from the intestinal tract 2 d after challenge. Another nonmotile strain (M14), which had a complete flagellar structure like that of the wild-type strain, did not colonize and was cleared from the intestinal tract like the other nonmotile and nonflagellated strains. One atypically motile strain (M5), which had a shorter flagellar filament than that of the wild-type strain, colonized the intestinal tract only when mice were challenged with a large inoculum. None of the mice challenged with either the wild-type or any of the mutant strains showed signs of illness. We concluded that motility is an important factor in the colonization of the intestinal tract of suckling mice by C. jejuni.  相似文献   

18.
Swimming motility allows the bacterial wilt pathogen Ralstonia solanacearum to efficiently invade and colonize host plants. However, the bacteria are essentially nonmotile once inside plant xylem vessels. To determine how and when motility genes are expressed, we cloned and mutated flhDC, which encodes a major regulator of flagellar biosynthesis and bacterial motility. An flhDC mutant was nonmotile and less virulent than its wild-type parent on both tomato and Arabidopsis; on Arabidopsis, the flhDC mutant also was less virulent than a nonmotile fliC flagellin mutant. Genes in the R. solanacearum motility regulon had strikingly different expression patterns in culture and in the plant. In culture, as expected, flhDC expression depended on PehSR, a regulator of early virulence factors; and, in turn, FlhDC was required for fliC (flagellin) expression. However, when bacteria grew in tomato plants, flhDC was expressed in both wild-type and pehR mutant backgrounds, although PehSR is necessary for motility both in culture and in planta. Both flhDC and pehSR were significantly induced in planta relative to expression levels in culture. Unexpectedly, the fliC gene was expressed in planta at cell densities where motile bacteria were not observed, as well as in a nonmotile flhDC mutant. Thus, expression of flhDC and flagellin itself are uncoupled from bacterial motility in the host environment, indicating that additional signals and regulatory circuits repress motility during plant pathogenesis.  相似文献   

19.
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.  相似文献   

20.
The colonization of glass surfaces by motile and nonmotile strains of Pseudomonas fluorescens was evaluated by using dual-dilution continuous culture (DDCC), competitive and noncompetitive attachment assays, and continuous-flow slide culture. Both strains possessed identical growth rates whether in the attached or planktonic state. Results of attachment assays using radiolabeled bacteria indicated that both strains obeyed first-order (monolayer) adsorption kinetics in pure culture. However, the motile strain attached about four times more rapidly and achieved higher final cell densities on surfaces than did the nonmotile strain (2.03 × 108 versus 5.57 × 107 cells vial-1) whether evaluated alone or in cocultures containing motile and nonmotile P. fluorescens. These kinetics were attributed to the increased transport of motile cells from the bulk aqueous phase to the hydrodynamic boundary layer where bacterial attachment, growth, and recolonization could occur. First-order attachment kinetics were also observed for both strains by using continuous-flow slide culture assays analyzed by image analysis. The DDCC system contained both aqueous and particulate phases which could be diluted independently. DDCC results indicated that when cocultures containing motile and nonmotile P. fluorescens colonized solid particles, the motile strain replaced the nonmotile strain in the system over time. Increasing the aqueous-phase rates of dilution decreased the time required for extinction of the nonmotile strain while concurrently decreasing the overall carrying capacity of the DDCC system for both strains. These results confirmed that bacterial motility conveyed a selective advantage during surface colonization even in aqueous-phase systems not dominated by laminar flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号