首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During meiotic prophase I the nucleolus of the mouse oocyte assumes a reticulate structure of ‘nucleolonema’ type. This change coincides with the appearance of several secondary fibrillar centres. The number of these centres at diplotene (97–113), largely exceeds that of nucleolar organizers (4c DNA = 20 NORs). The quantitatative analysis of autoradiographs after hybridization in situ with -3H-uridine labelled rRNA, enabled us to demonstrate that the multiplication of the fibrillar centres in mouse oocyte nucleolus during meiotic prophase I is not the result of an amplification of the rDNA. The number of silver grains in pachytene and diplotene nuclei was twice that counted for somatic cell and oogonium nuclei (2c DNA).  相似文献   

2.
3.
4.
5.
6.
Nucleolar-organizer region, nucleolus and mode of association of the sex bivalent were analyzed in spermatecytes of Chelymorpha variabilis Boheman. This species (2n=10II+Xyp) shows the typical sex chromosome system of the group Polyphaga. The results of silver staining techniques showed the nucleolar organizer region localized in a subterminal position of an autosomal bivalent. During meiotic prophase the nucleolus was distinguished with the silver staining and acridine orange fluorescence technique up to diakinesis. The independence of nucleolus and sex bivalent Xyp during meiosis is demonstrated. The positively silver staining but negatively orange-red material found within the parachute could be involved in the regular co-orientation of both sex chromosomes. After a longer hypotonic treatment, sex bivalents were observed elongated and paired only at one end during the pachytene stage. Along these sex chromosomes, C-bands showed positive blocks located in the pericentromeric and telomeric regions. Heterochromatic association of both sex chromosomes was suggested.  相似文献   

7.
In the last 3 oogonial mitoses in Ascaphus truei all daughter nuclei remain in the same cell. The oocyte is 8-nucleate at the start of meiotic prophase and remains so until late in oogenesis when 7 of the nuclei disappear. All 8 nuclei in a single oocyte resemble one another with respect to size and chromatin distribution at all stages of meiotic prophase. Much of the Feulgen-positive material in pachytene nuclei is concentrated into one region of the nucleus. — All of the 8 germinal vesicles of yolky oocytes have a full set of lampbrush diplotene bivalents. Germinal vesicles from oocytes of up to 0.8 mm diameter have less than 100 nucleoli, some of which are multiple nucleoli in the sense that they have more than one core region. Each of the 8 nuclei in oocytes from one animal had about the same volume of nucleolar material. — Two values have been obtained for the amount of DNA in a diploid nucleus from Ascaphus. A biochemical estimate utilizing erythrocyte nuclei and the diphenylamine reaction yielded a value of 7.1 pg per nucleus. Microphotometry of erythrocyte nuclei stained with Feulgen's reagent gave a value of 8.2 pg per nucleus. — Microphotometric measurements of Feulgen-stained nuclei at various stages of meiotic prophase up to diplotene indicate that each nucleus synthesizes up to 5 pg of extrachromosomal DNA during and immediately after pachytene. This DNA is considered to be nucleolar. Autoradiography of nuclei from oocytes which had been incubated for 6h in 3H thymidine showed silver grains over pachytene and early diplotene nuclei only. In pachytene nuclei the silver grains overlaid that part of the nucleus where Feulgen-positive material was most concentrated. Most of the chromosomal material was unlabelled. — The significance of the 8-nucleate condition in Ascaphus oocytes is discussed, and the amount of nucleolar DNA synthesized at pachytene and of nucleolar material present in germinal vesicles is compared with corresponding situations in other amphibians.  相似文献   

8.
We analyzed the behavior of the nucleolus, nucleolar structures and nucleolus organizer regions (NORs) during meiotic division in four species of phyllostomid bats that have different numbers and locations of NORs. Nucleoli began disassembly at leptotene, and the subcomponents released from the nucleolus were dispersed in the nucleoplasm, associated with perichromosomal regions, or they remained associated with NORs throughout division. In Phyllostomus discolor, a delay in nucleolus disassembly was observed; it disassembled by the end of pachytene. The RNA complexes identified by acridine orange staining were observed dispersed in the nucleoplasm and associated with perichromosomal regions. FISH with rDNA probe revealed the number of NORs of the species: one NOR in Carollia perspicillata, one pair in Platyrrhinus lineatus and P. discolor, and three pairs in Artibeus lituratus. During pachytene, there was a temporary dissociation of the homologous NORs, which returned to pairing at diplotene. The variation in the number (from one to three pairs) and location of NORs (in sex or autosomal chromosomes, at terminal or interstitial regions) did not seem to interfere with the nucleolar behavior of the different species because no variation in nucleolar behavior that could be correlated with the variation in the number and chromosomal location of NORs was detected.  相似文献   

9.
In seven mammalian species, including man, the position and number of nucleoli in pachytene spermatocyte nuclei were studied from electron microscope (EM) nuclear sections or bivalent microspreads. The number and position of the nucleolar organiser regions (NORs) in mitotic and meiotic chromosomes were also analysed, using silver staining techniques and in situ hybridisation protocols. The general organisation of pachytene spermatocyte nucleoli was almost the same, with only minor morphological differences between species. The terminal NORs of Thylamys elegans (Didelphoidea, Marsupialia), Dromiciops gliroides (Microbiotheridae, Marsupialia), Phyllotys osgoodi (Rodentia, Muridae) and man, always gave rise to peripheral nucleoli in the spermatocyte nucleus. In turn, the intercalated NORs from Octodon degus, Ctenomys opimus (Rodentia, Octodontidae) and Chinchilla lanigera (Rodentia, Cavidae), gave rise to central nucleoli. In species with a single nucleolar bivalent, just one nucleolus is formed, while in those with multiple nucleolar bivalents a variable number of nucleoli are formed by association of different nucleolar bivalents or NORs that occupy the same nuclear peripheral space (Phyllotis and man). It can be concluded that the position of each nucleolus within the spermatocyte nucleus is mainly dependent upon: (1) the position of the NOR in the nucleolar bivalent synaptonemal complex (SC), (2) the nuclear pathway of the nucleolar bivalent SC, being both telomeric ends attached to the nuclear envelope, and (3) the association between nucleolar bivalents by means of their NOR-nucleolar domains that occupy the same nuclear space. Thus, the distribution of nucleoli within the nuclear space of spermatocytes is non-random and it is consistent with the existence of a species-specific meiotic nuclear architecture.  相似文献   

10.
11.
From the silver staining behavior of various organelles in the nucleus we have divided meiotic prophase (leptotene to the diffuse stage) of the male Chinese hamster into five stages. Components within the nucleus, such as synaptonemal complex (SC), sex bivalent (SB), nucleolus organizer regions (NORs), chromatin and the dense bodies, showed a characteristic feature in each stage of meiotic prophase. The lampbrush chromosome stage was found to be followed by the diffuse stage. The chromatin around SC began to be organized at early pachytene and formed a brush-like structure at late pachytene. During early prophase stages a dramatic change in SB morphology occurred. Three types of morphology of SB were recognized: (1) the XY pair with long synapsis and fusiform or diffuse thickening of the unpaired portions (late zygotene and early pachytene), (2) desynapsed, thread-like axes seen at midpachytene, and (3) multistranded, branched, and anastomosed axes seen at late pachytene.Two types of the dense body were found during meiotic prophase; the double body in early stage (leptotene to early pachytene) and the single body in later stages (mid pachytene to diffuse stage). The small precursors of the double body existed at early leptotene but they increased in size and also changed the silver stainability during zygotene, becoming the characteristic double body consisted of one light body (L-body) and one dark body (D-body). These two bodies can also be recognized after Giemsa or acridine orange (AO) staining. The L-body fluoresced reddish orange after AO staining. The single body, which is probably formed by amalgamation of the D- and the L-bodies, showed a staining reaction similar to that of the D-body.Data from pancreatic lipase and protease treatments suggest that the D-body contained a lipoprotein.  相似文献   

12.
Silver-staining in the nuclei and chromosomes of spermatogenesis of four species of mammals (Man, Mus musculus, Rattus norvegicus, and Cavia cobaya) was investigated qualitatively and quantitatively. These species show a very similar pattern of activity of the nucleolus organizer regions (NORs) during the various stages of spermatogenesis. Silver precipitates are detectable in growing spermatogonia and up until the pachytene stage of meiotic prophase. During the meiotic metaphases I and II and during interkinesis silver-stainability disappears completely. A resumption of silverstainability occurs in round spermatids indicating a postmeiotic reactivation of NORs. This process does not persist beyond the early elongation phase. The quantitative determination of the silver-covered areas in relation to the total nuclear areas reveals minor differences between the species investigated with regard to the times and extents of maximum activation. The known localizations of the NORs in the karyotypes of the species investigated was confirmed using metaphase-preparations derived from somatic tissues.  相似文献   

13.
To reveal the behavior of silver stainable material localized mainly in the nucleoli and nucleolar organizing regions (NORs), the somatic cells ofVicia faba were investigated by silver staining throughout the mitotic cell cycle. Nucleoli of interphase and early prophase nuclei were darkly stained. From late prophase to anaphase the secondary constrictions were discriminated as silver stained NORs and many silver grains appeared throughout the cytoplasm. At late prophase the NOR condensed at the same rate as the chromosome arm. Small spherical bodies and two new nucleoli appeared in telophase nuclei and at the same time the cytoplasmic grains disappeared. On the basis of the above observations on the silver stainable material during each mitotic phase, the behavior of silver stainable material is interpreted.  相似文献   

14.
NOR and nucleolus in the spermatogenesis of acridoid grasshoppers   总被引:2,自引:2,他引:0  
By means of silver staining procedures of light microscopy the characteristics of the nucleolus and the NORs have been investigated in meiocytes of different grasshopper species. Our results show that: (1) Two is the most common number of chromosomes per haploid genome carrying active NORs although this number may vary from one up to five; (2) NOR activity is preferentially located on medium and short chromosomes but the X and the megameric chromosome are involved in nucleolar organization in a high proportion of the species studied; (3) The NOR location is normally restricted to one end in acro-telocentrics and to the short arm, near the centromere region, in metacentrics; (4) A marked correlation is observed between the number of nucleoli present in the spermatogonial cells and in the first meiotic prophase of a given species; (5) In some cases, the nucleoli are associated to chromosomes during spermatogonial premetaphases.  相似文献   

15.
During early embryogenesis of the nematode Parascaris univalens (2n=2) the processes of chromatin diminution and segregation of the germ and somatic cell lineages take place simultaneously. In this study we analyzed the nucleolar cycle in early embryos, both in germinal and somatic blastomeres, by means of silver staining and antibodies against the nucleolar protein fibrillarin. We observed an identical nucleolar cycle in both types of blastomeres, hence, the chromatin diminution process has no effect on the nucleolar cycle of somatic blastomeres. We report the existence of outstanding differences between this cycle and those previously reported during early embryogenesis of other species. There is a true nucleolar cycle in early embryos that shows a peculiar nucleolar disorganization at prophase, and a preferential localization of prenucleolar bodies only on the euchromatic regions during nucleologenesis. Moreover, fibrillarin does not form a perichromosomal sheath in metaphase or anaphase holocentric chromosomes, probably owing to their special centromeric organization. The number and location of nucleolus organizer regions (NORs) in the chromosomal complement have been determined using silver impregnation, chromomycin A3/distamycin A staining, and fluorescent in situ hybridization using an rDNA probe. There are only two NORs, one per chromosome, and these are lost in blastomeres after chromatin diminution. Moreover, the constant presence of two nucleoli in somatic blastomeres suggests that NORs are not affected during the fragmentation of euchromatic regions when this process occurs.  相似文献   

16.
Summary The origin of the nucleolus-like bodies (nucleoloids) released into the cytoplasm during the meiotic divisions in pollen mother cells ofLilium has been traced. Chains of accessory nucleoli are formed at the nucleolus organising regions (NOR) of the nucleolar chromosomes during pachytene and diplotene while the parent-cell nucleolus is undergoing dissolution. Autoradiography using3H-uridine as a tracer shows that this involves the resumption of RNA synthesis at the NOR, although no new synthesis is associated with the parent-cell nucleolus. The accessory nucleoli are released from the NOR to become distributed throughout the nucleus in late prophase; there is no evidence that they contain DNA. In division phases, their material is probably held at the chromosome surfaces as part of the metaphase sheath. After the divisions, globuli are re-formed, and these eventually appear as the nucleoloids after detachment into the cytoplasm. It seems improbable that a gene amplification phase is associated with accessory nucleolus or nucleoloid formation. Evidence from a wide range of species suggests that the production of cytoplasmic nucleoloids during microsporogenesis is a general phenomenon among angiosperms, probably linked with the rapid build-up of ribosome numbers which follows upon the period of elimination in the meiotic prophase.  相似文献   

17.
The incorporation of 3H-uridine in oogonia and oocytes during meiotic prophase I was studied in three human fetuses 13, 18, and 19 weeks old. Following a 40- or 60-min pulse, intense nuclear and nucleolar labeling was observed in oogonia. During the preleptotene chromosome condensation stage, the heteropycnotic masses were unlabeled, while numerous silver grains were seen on the filaments persisting around these masses. During leptotene, chromosomal and nucleolar RNA synthesis was significant, but less than that in the oogonia. The rate of incorporation declined rapidly during zygotene and fell to a very low level at early pachytene. Throughout pachytene no nucleolar RNA synthesis was observed. Chromosomal RNA synthesis progressively recovered during middle pachytene, was of moderate intensity at late pachytene, and increased again at early diplotene. Nucleolar RNA synthesis was very intense at early diplotene, at the same time as nucleolar size and basophilia increased.  相似文献   

18.
19.
Summary Mitotic preparations from 30 subfertile males and meiotic preparations from 3 normal and 2 subfertile males were examined by means of the Ag-I technique of Bloom and Goodpasture (1976) to reveal nucleolus organiser regions (NORs). In the mitotic preparations, each subject was found to have a characteristic number of Ag-positive NORs per cell, within a range of 6–10. Analysis of satellite associations showed that the mean number of satellite associations per cell was related to the modal number of Ag-positive NORs for each subject. In the meiotic preparations, silver deposition was observed throughout meiotic prophase, but disappeared totally during diakinesis and metaphase II. It was seen again in early spermatids, and disappeared again as nuclear elongation took place. This pattern was observed in both normal and subfertile subjects, and may provide indirect evidence for the activation of rRNA genes during spermatogenesis.  相似文献   

20.
Peter B. Moens 《Chromosoma》1968,23(4):418-451
The development of meiotic prophase in pollen mother cells ofLilium longiflorum is presented through photomicrographs of squashes and sections and through electron micrographs of thick and thin sections. Emphasis is placed on the first appearance of axial cores, the participation of axial cores in the formation of synaptinemal complexes, the fine structure of the complex and the fate of the complex at the end of pachytene. It is shown that axial cores are formed in early meiotic prophase chromosomes and that the two axial cores of a set of homologous chromosomes participate in the formation of a synaptinemal complex. It is proposed that the transverse filaments of each axial core meet and interdigitate and so produce the transverse filaments of the complex. It is shown that the complex is axial to the pachytene bivalent and that the association of the complex with chromosomal material is terminated at the end of pachytene. The pairing affinity of the cores in homologous and non-homologous chromosome associations is discussed. The zygotene stage is defined in terms of the occurrence of synaptinemal complexes and the attachment of the nucleolus to the nuclear membrane during this stage is noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号