首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Retinal guanylyl cyclase-1 (retGC-1), a key enzyme in phototransduction, is activated by guanylyl cyclase-activating proteins (GCAPs) if [Ca2+] is less than 300 nM. The activation is believed to be essential for the recovery of photoreceptors to the dark state; however, the molecular mechanism of the activation is unknown. Here, we report that dimerization of retGC-1 is involved in its activation by GCAPs. The GC activity and the formation of a 210-kDa cross-linked product of retGC-1 were monitored in bovine rod outer segment homogenates, GCAPs-free bovine rod outer segment membranes and recombinant bovine retGC-1 expressed in COS-7 cells. In addition to recombinant bovine GCAPs, constitutively active mutants of GCAPs that activate retGC-1 in a [Ca2+]-independent manner and bovine brain S100b that activates retGC-1 in the presence of approximately 10 microM [Ca2+] were used to investigate whether these activations take place through a similar mechanism, and whether [Ca2+] is directly involved in the dimerization. We found that a monomeric form of retGC-1 ( approximately 110 kDa) was mainly observed whenever GC activity was at basal or low levels. However, the 210-kDa product was increased whenever the GC activity was stimulated by any Ca2+-binding proteins used. We also found that [Ca2+] did not directly regulate the formation of the 210-kDa product. The 210-kDa product was detected in a purified GC preparation and did not contain GCAPs even when the formation of the 210-kDa product was stimulated by GCAPs. These data strongly suggest that the 210-kDa cross-linked product is a homodimer of retGC-1. We conclude that inactive retGC-1 is predominantly a monomeric form, and that dimerization of retGC-1 may be an essential step for its activation by active forms of GCAPs.  相似文献   

4.
5.
Chaperone protein BiP binds to Ire1 and dissociates in response to endoplasmic reticulum (ER) stress. However, it remains unclear how the signal transducer Ire1 senses ER stress and is subsequently activated. The crystal structure of the core stress-sensing region (CSSR) of yeast Ire1 luminal domain led to the controversial suggestion that the molecule can bind to unfolded proteins. We demonstrate that, upon ER stress, Ire1 clusters and actually interacts with unfolded proteins. Ire1 mutations that affect these phenomena reveal that Ire1 is activated via two steps, both of which are ER stress regulated, albeit in different ways. In the first step, BiP dissociation from Ire1 leads to its cluster formation. In the second step, direct interaction of unfolded proteins with the CSSR orients the cytosolic effector domains of clustered Ire1 molecules.  相似文献   

6.

Background

The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function.

Methodology/Principal Findings

Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom.

Conclusions/Significance

We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins.  相似文献   

7.
A portion of the 3'UTR of the human transferrin receptor mRNA mediates iron-dependent regulation of mRNA stability. The minimal RNA regulatory region contains three conserved hairpins, so-called iron responsive elements (IREs), that are recognized specifically by iron regulatory proteins (IRPs). The structure of this regulatory region and its complex with IRP-1 was probed using a combination of enzymes and chemicals. The data support the existence of an intrinsic IRE loop structure that is constrained by an internal C-G base pair. This particular structure is one of the determinants required for optimal IRP binding. IRP-1 covers one helical turn of the IRE and protects conserved residues in each of the three IREs: the bulged cytosine and nucleotides in the hairpin loops. Two essential IRP-phosphate contacts were identified by ethylation interference. Three-dimensional modeling of one IRE reveals that IRP-1 contacts several bases and the ribose-phosphate backbone located on one face in the deep groove, but contacts also exist with the shallow groove. A conformational change of the IRE loop mediated by IRP-1 binding was visualized by Pb2+-catalyzed hydrolysis. This effect is dependent on the loop structure and on the nature of the closing base pair. Within the regulatory region of transferrin receptor mRNA, IRP-1 induces reactivity changes in a U-rich hairpin loop that requires the presence of the stem-loop structure located just downstream the endonucleolytic cleavage site identified by Binder et al. (Binder R et al. 1994, EMBO J 13:1969-1980). These results provide indications of the mechanism by which IRP-1 stabilizes the transferrin receptor mRNA under iron depletion conditions.  相似文献   

8.
FEZ1 was initially described as a neuronal protein that influences axonal development and cell polarization. CLASP2 and NEK1 proteins are present in a centrosomal complex and participate in cell cycle and cell division mechanisms, but their functions were always described individually. Here, we report that NEK1 and CLASP2 colocalize with FEZ1 in a perinuclear region in mammalian cells, and observed that coiled-coil interactions occur between FEZ1/CLASP2 and FEZ1/NEK1 in vitro. These three proteins colocalize and interact with endogenous γ-tubulin. Furthermore, we found that CLASP2 is phosphorylated and interacts with active PKC isoforms, and that FEZ1/CLASP2 colocalization is inhibited by PMA treatment. Our results provide evidence that these three proteins cooperate in centrosomal functions and open new directions for future studies.  相似文献   

9.
10.
11.
12.
Surpili MJ  Delben TM  Kobarg J 《Biochemistry》2003,42(51):15369-15376
NEK protein kinases are evolutionarily conserved kinases structurally related to the Aspergillus nidulans mitotic regulator NIMA. At least nine members of the NEK family in vertebrates have been described to date, but for most of them the interacting protein partners are unknown. The pleiotropic deleterious effects and the formation of kidney cysts caused by NEK1 mutation in mice emphasize its involvement in the regulation of diverse cellular processes and in the etiology of polycystic kidney disease (PKD), respectively. Here we report the identification of proteins that interacted with the human NEK1 protein kinase in a yeast two-hybrid screen of a human fetal brain cDNA library, using the catalytic and regulatory domains of NEK1 separately as baits. These proteins are known to take part either in the development of PKD, in the double-strand DNA break repair at the G2/M transition phase of the cell cycle, or in neural cell development. The proteins involved in PKD include the motor protein KIF3A and the proteins tuberin and alpha-catulin. Mapping studies of the human NEK1 regulatory domain (NRD) indicated a strong interaction of most of the proteins retrieved from the library with putative coiled coils located in the central region of NRD. Our results give further support to the previous observation that NEK1 is of functional importance for the etiology of PKD.  相似文献   

13.
High mobility group A1 (HMGA1), a non-histone chromosomal protein, is highly expressed in a wide range of human cancers including cervical, breast, and prostate cancers. Therefore, hmga1 gene is considered as an attractive potential target for anticancer drugs. We have chosen 27 bp DNA sequence from a regulatory region of hmga1 promoter and studied its interaction with adriamycin (ADM) and in vitro expression of HMGA1 in the presence of ADM in HeLa cell line. A variety of biophysical techniques were employed to understand the characteristics of [DNA–ADM] complex. Spectrophotometric titration data, DNA denaturation profiles, and quenching of fluorescence of ADM in the presence of DNA demonstrated a strong complexation between DNA and ADM with a high binding affinity (Ka) of 1.3 × 106 M?1 and a stoichiometry of 1:3 (drug:nucleotide). The energetics of binding obtained from isothermal titration calorimetry and differential scanning calorimetry suggest the binding to be exothermic and enthalpy (?H, ?6.7 ± 2.4 kcal M?1) and entropy (TΔS, 18.5 ± 6.4 kcal M?1) driven (20°C), which is typical of intercalative mode of binding. Further, results on decreased expression (by ~70%) of HMGA1 both at mRNA and protein levels in association with the observed cell death (by ~75%) in HeLa cell line, clearly confirm that ADM does target hmga1; however, the effect of ADM on genes other than hmga1 either directly or via hmga1-mediated pathways cannot be ruled out in the observed cytotoxicity. Therefore, hmga1 in general and particularly the regulatory region is a promising target for therapeutic strategy in combating cancer.  相似文献   

14.
15.
16.
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.  相似文献   

17.
Protein kinase C-related kinase 1 (PRK1 or PKN) is involved in regulation of the intermediate filaments of the actin cytoskeleton, as well as having effects on processes as diverse as mitotic timing and apoptosis. It is activated by interacting with the Rho family small G proteins and arachidonic acid or by caspase cleavage. We have previously shown that the HR1b of PRK1 binds exclusively to Rac1, whereas the HR1a domain binds to both Rac1 and RhoA. Here, we have determined the solution structure of the HR1b-Rac complex. We show that HR1b binds to the C-terminal end of the effector loop and switch 2 of Rac1. Comparison with the HR1a-RhoA structure shows that this part of the Rac1-HR1b interaction is homologous to one of the contact sites that HR1a makes with RhoA. The Rac1 used in this study included the C-terminal polybasic region, which is frequently omitted from structural studies, as well as the core G domain. The Rac1 C-terminal region reverses in direction to interact with residues in switch 2, and the polybasic region itself interacts with residues in HR1b. The interactions with HR1b do not prevent the polybasic region being available to contact the negatively charged membrane phospholipids, which is considered to be its primary role. This is the first structural demonstration that the C terminus of a G protein forms a novel recognition element for effector binding.  相似文献   

18.
19.
20.
Autism is a developmental disability causing learning and memory disorder. The heart of the search for a cure for this syndrome is the need to understand dendrite branch patterning, a process crucial for proper synaptic transmission. Due to the association of snapin with the SNARE complex and its role in synaptic transmission it is reported as a potential drug target for autism therapies. We wish to impart the noesis of the 3D structure of the snapin protein, and in this chase we predict the native structure from its sequence of amino acid residues using the classical Comparative protein structure modeling methods. The predicted protein model can be of great assistance in understanding the structural insights, which is necessary to understand the protein function. Understanding the interactions between snapin and SNARE complex is crucial in studying its role in the neurotransmitter release process. We also presented a computational model that shows the interaction between the snapin and SNAP-25 protein, a part of the larger SNARE complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号