首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pepino (Solanum muricatum) is a vegetatively propagated, domesticated native of the Andes, where it grows with wild relatives. We used AFLPs and a 1-kb sequence of the 3-methylcrotonyl-CoA carboxylase gene to study variation of 27 accessions of S. muricatum and 35 collections of 10 species of wild relatives (Solanum section Basarthrum). A total of 298 AFLP fragments and 29 DNA sequence haplotypes were detected. Cluster and principal coordinate analyses and other genetic parameters estimated from both types of markers, show that S. muricatum is closely related to the species from one of the series (Caripensia) of section Basarthrum and that >90% of the variation of the cultigen is also represented in that series. Pepino is highly diverse, either because it is not monophyletic or it has been subjected to regular introgression with wild species, or both. Although a continuous distribution of the genetic variation occurred within the cultivated species, three genetic clusters were recognized. Cluster 1 is mostly centered in Ecuador, cluster 2 in Ecuador and Peru, and cluster 3 in Colombia and Ecuador. Cluster 3 also includes all modern cultivars studied. These results and other evidence suggest that northern Ecuador/southern Colombia is the main center of pepino diversity and the center of origin. The high genetic variation of this cultigen indicates that domestication does not always produce a genetic bottleneck.  相似文献   

2.
We evaluated the effects of treatments with thermotherapy (80°C for 24 h) and dipping in sodium hypochlorite (NaOCl; 0.8% for 10 min) on the germination percentage, germination rate, vigour index and ToMV inactivation of seeds from three pepino (Solarium muricatum) accessions (96–5, B–2 and OV–8) and two wild relatives (S. tabanoense EC–26 and S. caripense EC–40). Thermotherapy decreased the germination percentage (especially in the wild species), germination rate in wild species but not in cultivated pepino, and vigour index in all cases. Sodium hypochlorite increased germination, except for nonthermotreated seeds of OV–8, improved the germination rate in wild species and the vigour index in all cases except for non thermotreated OV–8. Seed coats were altered by both treatments, especially by NaOCl. Thermotherapy was totally effective in the inactivation of seed-borne ToMV, while NaOCl was not. Thermotherapy combined with NaOCl allows effective seed disinfection of S. muricatum seeds without negatively affecting seed germination. For the wild species, although thermotherapy reduces germination, the higher number of seeds per fruit in these species reduces the magnitude of the problem. Even when no disinfection is necessary, treatments with NaOCl are always advisable as they improve germination.  相似文献   

3.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

4.
A study of greenhouse-grown and field populations ofSolarium caripense Humboldt & Bonpland ex Dunal,S. tabanoense Correll, andS. trachycarpum Bitter & Sodiro, all diploid species (n = 12) of high altitudes of southern Central America and northern South America, revealed great morphological variation. Polygonographs utilizing seven characters (number of leaflets, leaf index, length of pubescence, number of flowers, anther length, corolla index, and pollen diameter) showed a wide range of variation and led to recognition of six morphologically distinct groups. Hybridizations with greenhouse populations showed that five of the morphological groups are reproductively isolated as well. A complex pattern of genetic variation involving various degrees and combinations of low crossing success, low seed set, lowered F1 pollen fertility, and nonreciprocal crossability was found. Examinations of meiotic figures from hybrids revealed no gross chromosomal structural differences. Evidence indicates that genetic differences, including gene-cytoplasm interactions, are significant isolating barriers. A key to the species studied plus appropriate taxonomic notes are provided.Solanum heiseri is described as new, andS. trachycarpum is placed inS. sect.Basarthrum seriesCaripensia.  相似文献   

5.
The history of the cultivated peanut involves natural evolution and human domestication. Despite the economic importance of peanuts and the many studies carried out on their cytology and genetic variability, current knowledge on the origin of the cultigen is still very limited compared with other major crops. In this context, we analyzed the polymorphisms of some non-coding cpDNA regions and the non-transcribed spacer of the nuclear 5S rDNA of the six botanical varieties of the two subspecies of the cultigen, of the wild tetraploid A. monticola, and of the nine diploid species so far proposed as the most probable relatives of the peanut, to gain more insight into the genetic and geographic origin of this legume crop. The analysis showed complete homology in the sequences of all the peanut and A. monticola samples. These results strongly suggest that the six botanical varieties of the cultigen have a single genetic origin and that A. monticola should be regarded as the immediate tetraploid ancestor from which A. hypogaea has arisen upon domestication. Here we provide results from the first sequence-based analysis in which the maternal (A. duranensis) and paternal (A. ipa?nsis) wild diploid species of the AABB tetraploids of Arachis were unequivocally identified. Not only that, but the combination of cpDNA and NTS 5S rDNA identified the population of A. duranensis from Río Seco, Salta, Argentina, and the only known population of A. ipa?nsis from Villa Montes, Tarija, Bolivia, as those to which the genome donors of the peanut could have belonged.  相似文献   

6.
Five taxa ofSolanum sect.Basarthrum were studied in an effort to clarify their taxonomic position and to determine the effective evolutionary mechanisms. Methods included an analysis of chromosome number and behavior, artificial hybridizations and a study of herbarium material. The data suggest thatS. canense andS. suaveolens are closely related and that 5.suaveolens may have been the progenitor ofS. canense. The only successful interspecific cross involving one of these two species was vigorous but highly sterile. Evidence from both morphology and crossing studies indicates a close relationship betweenS. basendopogon andS. caripense. Hybrids between these two species with relatively high fertility through the F3 generation were secured. The status ofS. basendopogon f.obtusum remains a problem since there is but one collection of the typical form. The placement ofS. sanctae-marthae in sect.Basarthrum is considered problematic. Virtually none of 170 interspecific crosses with this species were successful. Seed size and the presence and size of a seed wing are proposed as useful morphological characters in sect.Basarthrum. There is apparently a correlation between short styles and self-compatibility. All species are diploid (n = 12) and no chromosomal or meiotic aberrations were noted in the species or hybrids. Most of the more than 1,000 interspecific crosses failed. Most of the hybrid fruits bore no seeds or seeds which did not germinate. The primary barriers separating species are considered to be strong prefertilization isolating mechanisms and ecogeographic factors.  相似文献   

7.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

8.
Mapping of the ribosomal RNA genes on spinach chloroplast DNA.   总被引:22,自引:12,他引:10       下载免费PDF全文
Spinach chloroplast ribosomal RNAs have been hybridized to restriction endonuclease fragments of spinach chloroplast DNA. All three RNA species (23S, 16S and 5S) hybridized to a single large fragment when the DNA was digested with either Sall or Pstl. Hybridization of 23S RNA to fragments produced by Smal yielded two radioactive bands which corresponded to the bi-molar 2.5 X 10(6) and 1.15 X 10(6) Mr fragments. 16S RNA also hybridized to two, bi-molar Smal fragments (3.4 X 10(6) and 2.5 X 10(6) Mr) and 5S RNA hybridized to the 1.15 X 10(6) Mr bi-molar Smal fragment. The 23S RNA and 16S RNA cistrons were each also shown to contain a single EcoRI site. From the data it was possible to conclude that the ribosomal RNA genes are located on the inverted repeat region of the spinach chloroplast DNA restriction map [1,2], that the sequence of the cistrons is 16S - 23S - 5S and that the size of the spacer between the 16S and 23S RNA cistrons is approximately 0.90 X 10(6) Mr.  相似文献   

9.
Southern blot hybridization techniques were used to estimate the extent of chloroplast DNA sequences present in the mitochondrial genome of cowpea (Vigna unguiculata L.) The entire mitochondrial chromosome was homogeneously labeled and used to probe blotted DNA fragments obtained by extensive restriction of the tobacco chloroplast genome. The strongest cross-homologies were obtained with fragments derived from the inverted repeat and the atpBE cluster regions, although most of the clones tested (spanning 85% of the tobacco plastid genome) hybridized to mitochondrial DNA. Homologous chloroplast DNA restriction fragments represent a total of 30 to 68 kilobase pairs, depending upon the presence or absence of tRNA-encoding fragments. Plastid genes showing homology with mitochondrial DNA include those encoding ribosomal proteins, RNA polymerase, subunits of photosynthetic complexes, and the two major rRNAs.  相似文献   

10.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

11.
Chloroplast ribosomal RNA genes in the chloroplast DNA of Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena chloroplast DNA has a buoyant density in CsCI of 1.686. Shearing this DNA produces a satellite band at density 1.700. The satellite, easily lost during preparative CsCI gradient centrifugation of chloroplast DNA, contains the genes for chloroplast ribosomal RNA. Pure Euglena chloroplast DNA is shown to contain one set of ribosomal RNA genes for each 90 × 106 daltons of DNA.  相似文献   

12.
Using CsCl-Hoechst dye or CsCl-ethidium bromide gradients, satellite and nuclear DNAs were separated and characterized in three marine dinoflagellates: Glenodinium sp., and two toxic dinoflagellates, Protogonyaulax tamarensis and Protogonyaulax catenella. In all three dinoflagellates, the lowest density fraction, satellite DNA1, hybridized to chloroplast genes derived from terrestrial plants and/or other algae. Dinoflagellate chloroplast DNAs exhibited molecular sizes of 114 to 125 kilobase pairs, which is consistent with plastid sizes determined for other chromophytic algae (120-150 kilobase pairs). Mitochondrial DNA was not resolved from nuclear DNA in this system. Two additional satellite DNAs, satellite DNA2 and satellite DNA3, recovered from P. tamarensis and P. catenella were similar to one another, both within and between species, when characterized by restriction enzyme analysis. These satellites were 85 to 95 kilobase pairs in size, and exhibited restriction fragments that hybridized to yeast nuclear ribosomal RNA genes. Restriction enzyme analyses and DNA hybridization studies of cpDNA document that the two Protogonyaulax isolates are not evolutionarily identical.  相似文献   

13.
The nuclear and chloroplast ribosomal DNAs from Euglena were shown to have specific regions of nucleotide sequence homology. The regions of homology were identified by hybridization of restriction endonuclease DNA fragments of cloned chloroplast and nuclear ribosomal DNAs to one another. The regions of homology between these two ribosomal DNAs were in that part of the genes that code for the 3′ end of the small rRNAs (16S and 19S) and near or at the DNA sequences coding for the 5S RNAs. The nucleotide sequence homology between these regions was estimated to be approximately 94% by the melting point depression of a hybrid formed between the two ribosomal DNAs.  相似文献   

14.
Circular Vicia faba (broad bean) chloroplast DNA was hybridized to the restriction fragment BamHI B from the DNA of the transducing phage lambda rifd18, which carries the Escherichia coli ribosomal RNA operon rrnB. Cytochrome spreadings of the heteroduplexes show homologies in the 16 S and 23 S rRNA regions, but none in the spacer. The same lambda rifd18 fragment was hybridized to the Vicia cpDNA 2SalI fragment 3, which contains the Vicia rBNA operon, resulting in an analogous heteroduplex configuration. Cytochrome spreadings of this heteroduplex in increasing concentrations of formamide reveal regions of incomplete homologies. Heteroduplexes between the E. coli rrnD operon, obtained from the recombinant plasmid pBK8, and circular Vicia cpDNA revealed homologies in the spacer region as well as in the 16 S and 23 S rRNA region. Hybrids between all three types of rDNA and their homologous rRNAs were prepared using the mica adsorption technique. They show that the 23 S, 16 S, and 5 S rRNAs are transcribed from the same strand of Vicia cpDNA. The positions of the rRNAs were measured and compared to the heteroduplex structure. It was observed that the E. coli rrnD operon in the plasmid pBK8 contains two 5 S rRNA sequences near the distal end.  相似文献   

15.
16.
A minimum of 37 genes corresponding to tRNAs for 17 different amino acids have been localized on the restriction endonuclease cleavage site map of theZea mays chloroplast DNA molecule. Of these, 14 genes corresponding to tRNAs for 11 amino acids are located in the larger of the two single-copy regions which separate the two inverted copies of the repeat region. One tRNA gene is in the smaller single-copy region. Each copy of the large repeated sequence contains, in addition to the ribosomal RNA genes, 11 tRNA genes corresponding to tRNAs for 8 amino acids. The genes for tRNA2 Ile and tRNAAla map in the ribosomal spacer sequence separating the 16S and 23S ribosomal RNA genes. The three isoaccepting species for the tRNAsLeu and the three for tRNAsSer, as well as the two isoaccepting species for tRNAAsn, tRNAGly, tRNAsIle, tRNAsMet, tRNAsThr, are shown to be encoded at different loci. Two independent methods have been used for the localization of tRNA genes on the physical map of the maize chloroplast DNA molecule: (a) cloned chloroplast DNA fragments were hybridized with radioactively-labelled total 4S RNAs, the hybridized RNAs were then eluted, and identified by two-dimensional polyacrylamide gel electrophoresis, and (b) individual tRNAs were32P-labelledin vitro and hybridized to DNA fragments generated by digestion of maize chloroplast DNA with various restriction endonucleases.  相似文献   

17.
A fine mapping study of the ribosomal RNA region of HeLa cell mitochondrial DNA has been carried out by using as an approach the protection by hybridized 12 S and 16 S rRNA of the complementary sequences in DNA against digestion with the single strand-specific Aspergillus nuclease S1 or Escherichia coli exonuclease VII. No inserts have been detected in the main body of the 12 S and 16 S rRNA cistrons, in contrast to the situation described in the large mitochondrial ribosomal RNA gene of some strains of yeast and of Neurospora crassa. Furthermore, it has been possible to assign more precisely than previously the positions of the 5′ and 3′-ends of the 12 S rRNA and 16 S rRNA genes in the HpaII restriction map of HeLa cell mitochondrial DNA.  相似文献   

18.
Realizing the inconsistencies that exist in the extent and nature of differentiation in the Withania somnifera genetic resources in India, the 21 cultivated and wild accessions, and the two hybrids (cultivated?×?wild accessions and vice versa) were investigated for morphological, cytogenetical, chemical profiling, and crossability features. Their nuclear and chloroplast genomes were also assayed at the nucleotide sequence level, and by use of DNA markers. Chloroplast DNA diversity and somatic chromosome number (2n?=?48) were not helpful in identifying the differences. Other approaches, on the other hand, especially restriction endonuclease digests, types and sequence length composition of ITS 1 and ITS 2 of nuclear ribosomal DNA, AFLP fingerprinting, and crossability barriers unambiguously provided startling discrete differences between the cultivated and wild accessions, indicating a clear division of W. somnifera into two distinct lineages. These data, therefore, are indicative of the fact that because of the unique characteristics of its nuclear genome, and strong crossability barriers vis-à-vis wild accessions of W. somnifera, the cultivated accessions should be relegated to the rank of the separate species, W. ashwagandha.  相似文献   

19.
Chloroplast DNA variation in pearl millet and related species   总被引:4,自引:0,他引:4  
Clegg MT  Rawson JR  Thomas K 《Genetics》1984,106(3):449-461
The evolution of specific regions of the chloroplast genome was studied in five grass species in the genus Pennisetum, including pearl millet, and one species from a related genus (Cenchrus). Three different regions of the chloroplast DNA were investigated. The first region included a 12-kilobase pair (kbp) EcoRI fragment containing the 23S, 16S and 5S ribosomal RNA genes, which is part of a larger duplicated region of reverse orientation. The second region was contained in a 21-kbp Sa/I fragment, which spans the short single-copy sequence separating the two reverse repeat structures and which overlaps the duplicated copies of the 12-kbp Eco RI fragment. The third region was a 6-kbp EcoRI fragment located in the large single-copy region of the chloroplast genome. Together these regions account for slightly less than 25% of the chloroplast genome. Each of these DNA fragments was cloned and used as hybridization probes to determine the distribution of homologous DNA fragments generated by various restriction endonuclease digests.—A survey of 12 geographically diverse collections of pearl millet showed no indication of chloroplast DNA sequence polymorphism, despite moderate levels of nuclear-encoded enzyme polymorphism. Interspecific and intergeneric differences were found for restriction endonuclease sites in both the small and the large single-copy regions of the chloroplast genome. The reverse repeat structure showed identical restriction site distributions in all materials surveyed. These results suggest that the reverse repeat region is differentially conserved during the evolution of the chloroplast genome.  相似文献   

20.
Summary Labelled chloroplast rRNAs from Spinacia oleracea were hybridized to restriction endonuclease digests of chloroplast DNA from Oenothera hookeri and Euglena gracilis, to mitochondrial DNA of Acanthamoeba castellanii, and to DNA of the E. coli rrn B operon in the transducing phage lambda rifd18. The degree of homology is greatest for the 16S rRNA gene. Greater than 90% occurs between the two higher plant genes, 80% homology to the lower plant gene, 60%–70% homology to the bacterial gene, and 20% homology to the mitochondrial gene. The degree of hybridization varied considerably for the 23S and the 5S rRNA genes. Very high homology exists between the two higher plant genes, only about 50% homology for both the Euglena and bacterial genes, and no significant homology for the mitochondrial genes. These results show that any chloroplast (or E. coli) rRNA may be used as a probe to identify rRNA genes in other ctDNAs.Two RNA populations, each enriched for a different ctDNA-encoded mRNA, proved useful in the location of these genes on both higher plant ctDNAs. No significant hybridization was obtained using these probes to the Euglena ctDNA which seems to be too distantly related.Abbreviations Md megadalton, 106 dalton - bp, kbp base pair, kilo base pair - SSC Standard saline citrate, 1 times SSC is 0.15M sodium, chloride, 0.015 M trisodium citrate, pH, 6.8 - mtDNA mitochondrial DNA - ctDNA chloroplast DNA - ctrRNA chloroplast ribosomal RNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号