首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The retardation and arrest of fermentation, observed before the complete sugar consumption of high-sugar grape must, come from an inhibition of the yeast metabolism during its decline phase and are variable with the strain. The addition of nutritional growth factors stimulates the initial growth of the yeast but is ineffective in the decline phase. Some substances, known previously as yeast anaerobic growth factors (sterols, oleanolic acid, oxytocin), in some conditions (initially aerated grape must and aerobically cultivated yeast) act by increasing the viability of the resting cells and prolonging their fermentation activity. These substances have been named “survival factors.”  相似文献   

2.
To understand and control the dynamics of microbial growth and metabolism, a theoretical background based on segregated models is necessary, and therefore flow cytometry is the suitable measuring method. It is shown that additional information to the usual mean-value information, and to the well-known cytometric methods for determining DNA content and size/shape measurement by scattered light, like the distribution of membrane sterol content of baker's yeast, leads to a more detailed knowledge of growth dynamics. We have found, that a low content of membrane sterols is a characteristic of cells with suppressed proliferation activity, but necessary for high fermentation activity. Also, a high content of membrane sterols seems to enhance the viability and survival capability of harvested and dryed baker's yeast cells. Therefore, we recommend harvesting cells at a point of medium content of membrane sterols.  相似文献   

3.
The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.  相似文献   

4.
Lipid Content and Cryotolerance of Bakers' Yeast in Frozen Doughs   总被引:3,自引:1,他引:2       下载免费PDF全文
The relationship between lipid content and tolerance to freezing at −50°C was studied in Saccharomyces cerevisiae grown under batch or fed-batch mode and various aeration and temperature conditions. A higher free-sterol-to-phospholipid ratio as well as higher free sterol and phospholipid contents correlated with the superior cryoresistance in dough or in water of the fed-batch-grown compared with the batch-grown cells. For both growth modes, the presence of excess dissolved oxygen in the culture medium greatly improved yeast cryoresistance and trehalose content (P. Gélinas, G. Fiset, A. LeDuy, and J. Goulet, Appl. Environ. Microbiol. 26:2453-2459, 1989) without significantly changing the lipid profile. Under the batch or fed-batch modes, no correlation was found between the cryotolerance of bakers' yeast and the total cellular lipid content, the total sterol content, the phospholipid unsaturation index, the phosphate or crude protein content, or the yeast cell morphology (volume and roundness).  相似文献   

5.
The anaerobic growth of the yeast Saccharomyces cerevisiae normally requires the addition of molecular oxygen, which is used to synthesize sterols and unsaturated fatty acids (UFAs). A single oxygen pulse can stimulate enological fermentation, but the biochemical pathways involved in this phenomenon remain to be elucidated. We showed that the addition of oxygen (0.3 to 1.5 mg/g [dry mass] of yeast) to a lipid-depleted medium mainly resulted in the synthesis of the sterols and UFAs required for cell growth. However, the addition of oxygen during the stationary phase in a medium containing excess ergosterol and oleic acid increased the specific fermentation rate, increased cell viability, and shortened the fermentation period. Neither the respiratory chain nor de novo protein synthesis was required for these medium- and long-term effects. As de novo lipid synthesis may be involved in ethanol tolerance, we studied the effect of oxygen addition on sterol and UFA auxotrophs (erg1 and ole1 mutants, respectively). Both mutants exhibited normal anaerobic fermentation kinetics. However, only the ole1 mutant strain responded to the oxygen pulse during the stationary phase, suggesting that de novo sterol synthesis is required for the oxygen-induced increase of the specific fermentation rate. In conclusion, the sterol pathway appears to contribute significantly to the oxygen consumption capacities of cells under anaerobic conditions. Nevertheless, we demonstrated the existence of alternative oxygen consumption pathways that are neither linked to the respiratory chain nor linked to heme, sterol, or UFA synthesis. These pathways dissipate the oxygen added during the stationary phase, without affecting the fermentation kinetics.  相似文献   

6.
The content of sterols in the yeast Candida boidinii is low: 0.35--0.40% in a mineral medium with methanol as a sole carbon source; 0.55--0.60% in a medium with ethanol; 0.50--0.60% in a medium with glucose; 0.50--0.55% on wort--agar. Ergosterol is the main sterol in all of the cases. sterols are found mainly in the bound state as esters, and constitute about 90% of the total sterol content. Free sterols constitute only 10%. The level of sterols in this culture is rather constant and hardly changes within the first days of cultivation. The content of sterols increases only slightly (by 30--40%) when the culture ages.  相似文献   

7.
Although yeasts are known to be able to incorporate a wide variety of exogenous sterols under strict anaerobiosis, no data are available on the assimilation of grapevine phytosterols under enological conditions and the eventual impact on fermentation kinetics. We used therefore a mixture of pure phytosterols, in a proportion representative of the different grape skins phytosterols, to supplement a synthetic fermentation medium simulating a grape must. Under anaerobiosis, normal biomass formation was achieved with 5 mg phytosterols l–1. Similar results were obtained in comparison with the observed maximal fermentation rates. These results clearly indicated that grape phytosterols may efficiently act as a substitute for ergosterol in the yeast membrane for promoting yeast growth and initial fermentative activity. Analysis of total yeast sterols indicated that phytosterols are accumulated without further modification, mainly in their esterified form. However, all the fermentations performed with synthetic media supplemented with phytosterols led to stuck fermentations, linked to a correlative strong decrease in cell viability during the stationary phase. Therefore, grape phytosterols are easily incorporated by yeast cells under enological conditions for promoting initial growth and fermentative activity, but rapidly perturb the yeast membrane properties by being the predominant sterols.  相似文献   

8.
Yeasts can incorporate a wide variety of exogenous sterols under strict anaerobiosis. Yeasts normally require oxygen for growth when exogenous sterols are limiting, as this favours the synthesis of lipids (sterols and unsaturated fatty acids). Although much is known about the oxygen requirements of yeasts during anaerobic growth, little is known about their exact sterol requirements in such conditions. We developed a method to determine the amount of ergosterol required for the growth of several yeast strains. We found that pre-cultured yeast strains all contained similar amounts of stored sterols, but exhibited different ergosterol assimilation efficiencies in enological conditions [as measured by the ergosterol concentration required to sustain half the number of generations attributed to ergosterol assimilation (P50)]. P50 was correlated with the intensity of sterol synthesis. Active dry yeasts (ADYs) contained less stored sterols than their pre-cultured counterparts and displayed very different ergosterol assimilation efficiencies. We showed that five different batches of the same industrial Saccharomyces cerevisiae ADY exhibited significantly different ergosterol requirements for growth. These differences were mainly attributed to differences in initial sterol reserves. The method described here can therefore be used to quantify indirectly the sterol synthesis abilities of yeast strains and to estimate the size of sterol reserves.  相似文献   

9.
Phytosterols have been recovered from the deodorizer distillate produced in the final deodorization step of vegetable oil refining by various processes. The deodorizer distillate contains mainly free fatty acids (FFAs), phytosterols, and tocopherols. The presence of FFAs hinders recovery of phytosterols. In this study, fermentation of soybean oil deodorizer distillate (SODD) with Candida tropicalis 1253 was carried out. FFAs were utilized as carbon source and converted into cellular components as the yeast cells grew. Phytosterols concentration in SODD increased from 15.2 to 28.43 % after fermentation. No significant loss of phytosterols was observed during the process. Microbial fermentation of SODD is a potential approach to concentrate phytosterols before the recovery of phytosterols from SODD. During SODD fermentation, sterols-rich yeast cells were produced and the content of total sterols was as high as 6.96 %, but its major sterol was not ergosterol, which is the major sterol encountered in Saccharomyces cerevisiae. Except ergosterol, other sterols synthesized in the cells need to be identified.  相似文献   

10.
The retardation and arrest of fermentation, observed before the complete sugar consumption of high-sugar grape must, come from an inhibition of the yeast metabolism during its decline phase and are variable with the strain. The addition of nutritional growth factors stimulates the initial growth of the yeast but is ineffective in the decline phase. Some substances, known previously as yeast anaerobic growth factors (sterols, oleanolic acid, oxytocin), in some conditions (initially aerated grape must and aerobically cultivated yeast) act by increasing the viability of the resting cells and prolonging their fermentation activity. These substances have been named "survival factors."  相似文献   

11.
Spectral changes resulting from specific interaction between sterols and the polyene antibiotic filipin have been exploited in a simple sterol assay that is not subject to interference. This can be employed to measure the sterol content of brewing yeast prior to use thus permitting improved control of the fermentation process. It may also be applicable to quantification of fungal biomass.  相似文献   

12.
Abscisic Acid in relation to mineral deprivation   总被引:5,自引:4,他引:1       下载免费PDF全文
Tobacco (Nicotiana rustica) plants growing in half-strength Hoagland solution were deprived of nutrients by being transferred to distilled water. The abscisic acid content of leaves in the mineral-deprived plants rose continuously throughout the 7 days of the experimental period. However, although the content of ABA rose within 24 hours, a decline in growth and leaf-chlorophyll were discernible only after the 4th day of mineral deprivation. As anticipated, mineral-deprived (stressed) plants exhibit “resistance” to lack of aeration in the root medium, similar to that shown in salt-stressed plants or plants that were pretreated with absiscic acid. When the mineral-deprived plants were returned to half-strength Hoagland, the content of leaf abscisic acid declined to the prestressed level and the “resistance” to lack of root aeration disappeared.  相似文献   

13.
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.  相似文献   

14.
The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.  相似文献   

15.
Saccharomyces cerevisiae GL7 cells require exogenous sterol and unsaturated fatty acid for growth. When grown in the presence of cholesterol or 7-dehydrocholesterol, the cells incorporated less saturated fatty acid into phospholipids than cells grown with ergosterol, stigmasterol, or beta-sitosterol as the sterol source. This lower saturated fatty acid content was most pronounced in phosphatidylethanolamine, slightly less so in phosphatidylcholine, and least evident in phosphatidylserine and phosphatidylinositol. Growing the cells with the various sterols did not affect the ratios of individual phospholipids. The ability of strain GL7 to use 7-dehydrocholesterol as the only sterol supplement for growth was dependent upon the nature of the unsaturated fatty acids added to the growth medium. In the presence of linoleic, linolenic, or a mixture of palmitoleic and oleic acids, excellent growth was observed with either ergosterol, cholesterol, or 7-dehydrocholesterol. However, when the medium was supplemented with either oleic or petroselenic acid, the cells grew more slowly (oleic) or much more poorly (petroselenic) with 7-dehydrocholesterol than with ergosterol. A specific relationship between sterol structure and membrane fatty acid composition in yeast cells is implied.  相似文献   

16.
Sterols are essential nutrients for grasshoppers, as well as all other insects, but metabolic constraints can limit which phytosterols support normal growth and development. In the current study, the generalist grasshopper Schistocerca americana was used to address two questions related to grasshopper sterol nutrition: (1) how does sterol quantity influence growth and survival, and (2) how do mixtures of suitable and unsuitable sterols at different concentrations influence growth and survival? Results from the first experiment indicated that this grasshopper species had a minimum sterol requirement of 0.05% dry weight; as sterol quantity increased above this concentration, however, survival and performance were not enhanced. Results from the second experiment revealed two novel aspects of sterol nutrition in grasshoppers: (1) when suitable sterols were limiting, most individuals could not use unsuitable sterols to meet the minimum sterol requirement (i.e. no sparing occurred), and (2) above a certain threshold, unsuitable sterols were deleterious even when suitable sterols were present at a concentration that alone permits normal growth and development. We discuss these physiological findings in terms of how sterol metabolic constraints in grasshoppers might influence foraging.  相似文献   

17.
In Saccharomyces cerevisiae nitrogen limitation under aerobic conditions (low specific growth rate) provokes an enhanced synthesis of sterols. Analysis of east cultures during the enhanced sterol biosynthesis showed a temporary decrease of protein content and a simultaneous increase in polysaccharide and lipid levels. This was reflected in the ultrastructure of cells where numerous lipid globules (spherosomes, oleosomes) appeared around extensive membrane-bound compartments containing membrane vesicles and lipoprotein material. Electronograms showed that such compartments were formed between the layers of endoplasmic reticulum and belonged to the vacuome phase of the yeast cell. It appears that vacuoles formed in yeast during enhanced synthesis of sterols have a storage rather than a lysosomal function.  相似文献   

18.
The relationship between lipid content and tolerance to freezing at -50 degrees C was studied in Saccharomyces cerevisiae grown under batch or fed-batch mode and various aeration and temperature conditions. A higher free-sterol-to-phospholipid ratio as well as higher free sterol and phospholipid contents correlated with the superior cryoresistance in dough or in water of the fed-batch-grown compared with the batch-grown cells. For both growth modes, the presence of excess dissolved oxygen in the culture medium greatly improved yeast cryoresistance and trehalose content (P. Gélinas, G. Fiset, A. LeDuy, and J. Goulet, Appl. Environ. Microbiol. 26:2453-2459, 1989) without significantly changing the lipid profile. Under the batch or fed-batch modes, no correlation was found between the cryotolerance of bakers' yeast and the total cellular lipid content, the total sterol content, the phospholipid unsaturation index, the phosphate or crude protein content, or the yeast cell morphology (volume and roundness).  相似文献   

19.
The following data have been obtained from comparative studies on the metabolism of cholesterol, cholestanol, and beta-sitosterol by L-cell mouse fibroblasts. (1) When the sterols are added to the growth medium under similar conditions, cellular incorporation of cholesterol > cholestanol > beta-sitosterol; (2) only limited cellular esterification of these compounds occurs; (3) no metabolic products arising from the sterols could be detected; (4) influx of all sterols is dependent upon the concentration; and (5) exogenous cholesterol reduces mevalonate incorporation into cellular sterol to a lesser extent than acetate or glucose. The metabolism of these sterols is discussed in relation to their ability to influence de novo sterol biosynthesis.  相似文献   

20.
The interconversion of free and esterified sterols was followed radioisotopically with [U-14C]acetate and [methyl-14C]methionine. In pulse-chase experiments, radioactivity first appeared mainly in unesterified sterols in exponential-phase cells. Within one generation time, the label equilibrated between the free and esterified sterol pools and subsequently accumulated in steryl esters in stationary-phase cells. When the sterol pools were prelabeled by growing cells aerobically to the stationary phase and the cells were diluted into unlabeled medium, the prelabeled steryl esters returned to the free sterol form under several conditions. (i) During aerobic growth, the prelabeled sterols decreased from 80% to 45% esters in the early exponential phase and then returned to 80% esters as the culture reached the stationary phase. (ii) Under anaerobic conditions, the percentage of prelabeled steryl esters declined continuously. When growth stopped, only 15% of the sterols remained esterified. (iii) In the presence of an inhibitor of sterol biosynthesis, which causes accumulation of a precursor to ergosterol, prelabeled sterols decreased to 40% steryl esters while the precursor was found preferentially in the esterified form. These results indicate that the bulk of the free sterol and steryl ester pools are freely interconvertible, with the steryl esters serving as a supply of free sterols. Furthermore, there is an active cellular control over what types of sterol are found in the free and esterified sterol pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号