首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA-repair host-mediated assay was further calibrated by determining the genotoxic activities of 4 methylating carcinogens, namely, dimethylnitrosamine (DMNA), 1,2-dimethylhydrazine (SDMH), methyl nitrosourea (MNU) and methyl methanesulphonate (MMS) in various organs of treated mice. The ranking of the animal-mediated genotoxic activities of the compounds was compared with that obtained in DNA repair assays performed in vitro. The differential survival of strain E. coli K-12/343/113 and of its DNA-repair-deficient derivatives recA, polA and uvrB/recA, served as a measure of genotoxic potency. In the in vitro assays and at equimolar exposure concentrations, MMS and MNU are the most active chemicals, followed by DMNA, which shows a slight genotoxic effect only in the presence of mouse liver homogenate; SDMH has no activity under these conditions. In the host-mediated assays, the order of genotoxic potency of the compounds was quite different: those carcinogens which require mammalian metabolic activation, namely, DMNA and SDMH, show strong effects in liver and blood, a lesser effect in the lungs and kidneys and the least effect in the spleen. The activity of MNU, a directly acting compound, is similar in all organs investigated, but it is clearly lower than that of DMNA and SDMH. MMS, also a directly acting carcinogen, causes some (barely significant) effect at the highest dose tested. A similar order of potency was observed when the compounds were tested in intrasanguineous host-mediated assays with gene mutation as an endpoint. DMNA and SDMH induce comparable frequencies of L-valine-resistant mutants in E. coli K-12/343/113 recovered from liver and spleen of treated mice, the effect in the liver being the strongest. MNU is mutagenic only at a higher dose, while MMS shows no effect. The results are discussed with respect to the literature data on organ-specific DNA adduct formation induced by the compounds. It is concluded that qualitatively there is a good correlation between the degree of genotoxic activity found in the DNA repair host-mediated assay and DNA adduct formation in the animal's own cells. This is exemplified by the finding that the relative order of genotoxic activity of the 4 methylating agents in bacteria recovered from various organs (DMNA approximately equal to SDMH greater than MNU greater than MMS) is reflected by the same order of magnitude in DNA alkylation in corresponding mammalian organs. Quantitatively, the indirectly acting agents DMNA and SDMH seem to induce fewer genotoxic effects in bacteria present in the liver than would be expected on the basis of DNA-adduct formation data.  相似文献   

2.
The potential use of EDTA-permeabilized E. coli cells for the investigation of genotoxic effects of compounds with a large molecular configuration in vitro and in animal-mediated differential DNA-repair assays was studied. The indicator for the induction of (repairable) DNA damage was a pair of E. coli K-12 strains (343/765 and 343/753) differing vastly in DNA-repair capacity (uvr+/rec+ vs. uvrB/recA). Investigations on the influence of EDTA treatment on the viability of these strains show that during short-term exposure (3 min), the EDTA level should not exceed 0.5 mmole/l in the pretreatment mix, since at higher concentrations a marginal titer reduction of the repair-deficient strain occurs, thus indicating a weak genotoxic activity of this chelating agent. Comparisons of the results gained in vitro with permeabilized and untreated cells demonstrate that EDTA exposure leads to a substantial enhancement of the sensitivity of the indicator bacteria towards DNA damage induced by B(a)P and N-Ac-2AAF which is essential for the detection of genotoxic activities of these polycyclic aromatic compounds. Experiments to elucidate the possibility of employing EDTA-treated cells in vivo show that following intravenous and oral administration the recovery rates of permeabilized indicator strains from various mouse organs are substantially lower than those found under identical conditions (exposure time 150 min) with untreated strains. Nevertheless enough viable cells can be recovered from liver, spleen, kidneys, lungs and stomach to allow the investigation of organ-specific genotoxicity. It is furthermore noteworthy that exposure of permeabilized indicator cells in control animals (for 150 min) resulted in a marginal reduction of the relative survival of the repair-deficient strain in all organs investigated, whereas with non-treated strains such effects are only detectable after extended exposure periods. The observation of a slightly elevated genotoxic background under in vivo conditions does not prevent the assessment of the organ distribution of genotoxic effects induced by mutagens and/or carcinogens: in the case of B(a)P, intraperitoneal administration to mice in the dose range of 10-50 mg/kg body weight resulted in a pronounced dose-dependent inactivation of the uvrB/recA cells in the liver. Also in the lungs differential killing effects occurred at the highest dose tested, whereas no genotoxic activities were detectable in stomach, kidneys and spleen of the host animals.  相似文献   

3.
The genotoxic activity of benzo[a]pyrene (BAP), 2-nitrofluorene (NF) and airborne particulate matter was evaluated in the DNA-repair host-mediated assay after intraperitoneal or intratracheal administration. Dimethylnitrosamine (DMNA), used as a positive control, showed a genotoxic effect after both intraperitoneal and intratracheal administration, the strongest effect being found in liver, followed by lungs and kidneys, whereas a weak effect was observed in the spleen. In general no difference in genotoxicity was found between the 2 administration routes used. For BAP, although clearly positive in vitro, a moderate dose-dependent effect was found only in the liver after intraperitoneal administration. NF, which was positive in vitro both with and without a metabolizing system, produced no genotoxic effect in any of the organs tested after intraperitoneal administration. Extracts of airborne particulate matter which were genotoxic in vitro failed to cause a genotoxic effect in vivo by either route of administration. Possible explanations for the differences between the data obtained in vitro and in vivo are discussed.  相似文献   

4.
The distribution of genotoxic factors in various organs of mice treated orally with methylazoxymethanol-beta-D-glycoside (cycasin) was investigated using the DNA-repair host mediated assay. Indicator of genotoxic activity was a pair of streptomycin dependent Escherichia coli strains differing vastly in DNA repair capacity; uvrB/recA vs. uvr+/rec+. The animal-mediated assays were performed by injecting mixtures of the two strains i.v. and orally into mice, which were subsequently treated with the test chemical and from which the differential survival of the indicator bacteria present in several organs was determined. The same strains and selection procedures were also used for assessing the DNA-damaging activity in vitro. In the animal-mediated assays in which cycasin was applied orally, significant effects were observed at doses of 100 and 500 mg/kg body weight. The organ distribution of genotoxic factors in the host animal was as follows: the highest genotoxic activity was observed in the liver, followed by intestine and stomach; a clear effect was also observed in the kidneys and, to a lower extent, in the blood stream and in the lungs at the highest dose administered (500 mg/kg body weight). Under in vitro conditions a marginal genotoxic effect was observed even in the absence of liver homogenate, indicating that the test compound is possible activated (hydrolysed) by the E. coli cells. Therefore the genotoxic activity of cycasin observed in the gastrointestinal tract was not unexpected, since the substance was applied orally, thereby exposing the indicator bacteria in these organs to high levels of unmetabolised compound, especially in the stomach. In the intestine members of the microbial flora probably contribute to the metabolic activation of the test compound. The occurrence of genotoxic factors remote from the gastrointestinal tract shows that the present compound or active metabolites thereof penetrate through the intestinal barrier. The extraordinarily high genotoxic activity observed in the liver suggests that the compound is additionally activated in this organ. In compliance with previous in vitro findings this second activation step might lead to the formation of the highly reactive aldehydic form of methylazoxymethanol (MAMAL) mediated by dehydrogenases. Comparison with carcinogenicity studies indicates a good correlation between the distribution of genotoxic effects as determined in the present studies and the localisation of tumors in various organs of rodents treated with cycasin.  相似文献   

5.
The feasibility of performing tests for repairable DNA damage in animal assay procedures was investigated by using repair-proficient and repair-deficient derivatives of E. coli K12 strain 343/113, including mutations in the uvrB, recA, polA and dam genes. To avoid variations in the relative recovery of viable cells from different samples, the strains were further marked with auxotrophic growth requirements, so that mixtures could be treated and the survival of each strain determined individually on media containing the corresponding growth factors. Spot tests were performed with the various strains to re-assess the necessity of using a combination of repair deficiencies, when genotoxic agents of differing mode of action are to be detected. Liquid suspension tests on mixtures of the different strains, furthermore, confirmed that the survival of the individual strains can be determined separately on selective media after treatment with methyl methanesulfonate (MMS) and methyl nitrosourea (MNU). These tests were also used to demonstrate that dimethyl nitrosamine (DMNA) is activated by Aroclor-1254-induced rat-liver S9 fractions to genotoxic products, as measured by the low survival of a recA derivative compared with the repair-proficient wild-type strain. Intrasanguineous host-mediated assays using the present derivatives of E. coli K12/343/113 showed that the various strains, injected simultaneously into mice, could be recovered in amounts sufficient for the individual determination of the relative survival in liver, spleen, lungs, kidneys, pancreas and the blood stream of the host animals. Using a mixture of the repair-proficient parent and the recA derivative inoculated into mice that were subsequently treated with MMS, NMU or DMNA, we found that these chemicals induce a larger decrease in survival in the recA strain as compared with the wild-type in cells recovered from the liver and the spleen. The order of genotoxic potency so determined was DMNA greater than MNU greater than MMS; this is similar to the ranking of the carcinogenicity of these compounds in rodents and probably also reflects the various degrees of DNA alkylation in cells of the livers of the treated animals. The general usefulness of the host-mediated differential DNA repair assay for detecting genotoxic factors in various organs of animals remains to be assessed by using chemical mutagens of different modes of action.  相似文献   

6.
Genotoxic effects of methyl isothiocyanate   总被引:3,自引:0,他引:3  
Aim of the study was to investigate the genotoxic effects of methyl isothiocyanate (MITC), a compound widely distributed in the environment as a constituent of certain vegetables, a soil fumigant and breakdown product of carbamate pesticides. MITC caused only marginal mutation induction in reversion assays with Salmonella strains TA100 and TA98 and, the maximum effect (<2-fold increase over the background rate) was seen at 100microg/ml. In differential DNA-repair assays with E. coli (strains 343/763 uvrB/recA and 343/765 uvr(+)/rec(+)), a pronounced dose-response effect (induction of repairable DNA-damage) was seen at low concentrations (>/=4microg/ml). In both bacterial assays, addition of activation mix (rat liver S-9) led to a reduction of the genotoxic effects. In micronucleus assay and in single cell gel electrophoresis assay with human hepatoma cells (HepG2), clear cut positive results were obtained at exposure concentrations of <5microg/ml. On the contrary, only marginal effects were seen in differential DNA-repair host-mediated assays where E. coli indicator cells were recovered from different inner organs of mice that had been treated orally with a high dose (90mg/kg bw) of the test compound. Further in vitro experiments showed that MITC is inactivated by body fluids (saliva, gastric juice) and that its DNA-damaging properties are attenuated by non-enzymatic protein binding. Since exposure of HepG2 cells to MITC led to formation of thiobarbituric acid reactive substances, it is likely that its DNA-damaging effects involve lipid peroxidation processes. Overall, our findings show that MITC induces only marginal effects at extremely high (almost lethal) doses in inner organs in vivo, but it causes DNA-damage at low concentrations in vitro.  相似文献   

7.
Monolayer cultures of rat hepatocytes activated tris(2,3-dibromopropyl)phosphate (Tris-BP) more efficiently than 2-acetylaminofluorene (AAF), to genotoxic products which caused mutations in co-cultures of S. typhimurium. In contrast, AAF caused a greater genotoxic response in the hepatocytes than Tris-BP, as judged by the increase in DNA-repair synthesis measured by liquid scintillation counting of 3H-TdR incorporated into DNA isolated from the nuclei of the hepatocytes. Covalent binding of 0.05 mM 3H-Tris-BP to cellular proteins occurred at a similar rate as covalent binding of 0.25 mM 14C-AAF. Tris-BP was the more cytotoxic of the two compounds as determined by leakage of cellular lactate dehydrogenase into the culture medium. The observed differences in the cytotoxic and genotoxic responses between Tris-BP and AAF were probably caused by differences in the nature of their reactive metabolites with respect to stability, lipophilicity and/or their interactions with variuos cellular nucleophilic sites. The relative DNA-repair synthesis induced by an AAF exposure for 18 h decreased with time after plating of isolated hepatocytes. Tris-BP first caused an increase in the relative DNA-repair synthesis up to 27 h after plating, whereafter the response declined reaching control values using cultures 75 h after plating. In parallel with the decreased relative response in DNA-repair synthesis with time, the background radioactivity in isolated nuclei from untreated cells increased both when the hepatocytes were incubated in the presence or absence of hydroxyurea to inhibit replicative DNA synthesis. Increased DNA-repair synthesis was demonstrated as early as 3 h after commencing exposure to the test substances. While the induced DNA-repair synthesis caused by Tris-BP remained constant after 6 h of exposure, the response caused by AAF increased with increased exposure time beyond 6 h. To assess the role of different metabolic pathways in the genotoxic and cytotoxic responses of Tris-BP and AAF, the hepatocytes were exposed to test substances in the presence of various metabolic inhibitors for 3 h, whereafter the cell medium was removed and replaced by cell-culture medium containing 3H-TdR and hydroxyurea. The cytochrome P-450 inhibitor metyrapone decreased both the genotoxic and cytotoxic effects of Tris-BP, while α-naphthoflavone reduced the genotoxic effect of AAF. The addition of glutathione (GSH) or N-acetylcysteine decreased both the cytotoxic and genotoxic effects of Tris-BP, while cellular depletion of GSH by diethylmaleate increased these effects. Manipulations in the cellular levels of sulhydryl-containing substances in the hepatocytes by these agents had little effects on the DNA-repair synthesis caused by AAF. The results indicate that such a hepatocyte culture system may be very useful as a tool to study mechanisms involved in the formation of cytotoxic and/or genotoxic metabolites from various xenobiotics.  相似文献   

8.
The antiprotozoan agent metronidazole (1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole) and two of its major human urinary excretion products, 2-methyl-5-nitromidazole-1-yl acetic acid and 1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole were tested for genotoxic activity in human lymphocytes in vitro by analysis of chromosome aberrations, sister-chromatid exchanges and DNA-repair synthesis. The positive control compounds methyl methanesulphonate (MMS) and nitrogen mustard (HN2) showed significant genotoxic activity in these tests. No such activity of metronidazole and its two metabolites was detected in concentrations up to 1000 microgram/ml (5.8 X 10(-3) M). Nor did these 3 compounds influence DNA-repair synthesis induced by MMS and HN2. These results suggest that metronidazole, 2-methyl-5-nitroimidazole-1-yl acetic acid and 1-(2-hydroxyethyl)-2-hydroxymethyl-5-nitroimidazole have no direct genotoxic effect on human lymphocytes in vitro.  相似文献   

9.
The genotoxicity of 30 aromatic amines selected from IARC (International Agency for Research on Cancer) groups 1, 2A, 2B and 3 and from the U.S. NTP (National Toxicology Program) carcinogenicity database were evaluated using the alkaline single cell gel electrophoresis (SCG) (Comet) assay in mouse organs. We treated groups of four mice once orally at the maximum tolerated dose (MTD) and sampled stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow 3, 8 and 24 h after treatment. For the 20 aromatic amines that are rodent carcinogens, the assay was positive in at least one organ, suggesting a high predictive ability for the assay. For most of the SCG-positive aromatic amines, the organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Organ-specific genotoxicity, therefore, is necessary but not sufficient for the prediction of organ-specific carcinogenicity. For the 10 non-carcinogenic aromatic amines (eight were Ames test-positive and two were Ames test-negative), the assay was negative in all organs studied. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative non-genotoxic (Ames test-negative) carcinogens. The alkaline SCG assay, which detects DNA lesions, is not suitable for identifying non-genotoxic carcinogens. The present SCG study revealed a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic non-carcinogens. These results suggest that the alkaline SCG assay can be usefully used to evaluate the in vivo genotoxicity of chemicals in multiple organs, providing for a good assessment of potential carcinogenicity.  相似文献   

10.
The accumulation of environmental compounds which exhibit genotoxic properties in short-term assays and the increasing lag of time for obtaining confirmation or not in long-term animal mutagenicity and carcinogenicity tests, makes it necessary to develop alternative, rapid methodologies for estimating genotoxic activity in vivo. In the experimental approach used here, it was assumed that the genotoxic activity of foreign compounds in animals, and ultimately humans, is determined among others by exposure level, organ distribution of (DNA) dose, and genotoxic potency per unit of dose, and that knowledge about these 3 parameters may allow to rapidly determine the expected degree of genotoxicity in various organs of exposed animals. In view of the high degree of qualitative correlation between mutagenic activity of chemicals in bacteria and in cultured mammalian cells, and their mutagenic and carcinogenic properties in animals, and in order to be able to distinguish whether mutagenic potency differences were due to differences in (DNA) dose rather than other physiological factors, the results of mutagenicity tests obtained in the present experiments using bacteria and mammalian cells were compared on the basis of DNA dose rather than exposure concentrations, with the following questions in mind: Is there an absolute or a relative correlation between the mutagenic potencies of various ethylating agents in bacteria (E. coli K12) and in mammalian cells (V79 Chinese hamster) after treatment in standardized experiments, and can specific DNA adducts be made responsible for mutagenicity? Is the order of mutagenic potency of various ethylating agents observed in bacteria in vitro representative of the ranking of mutagenic potency found in vivo? Since the answer to this last question was negative, a further question addressed to was whether short-term in vivo assays could be developed for a rapid determination of the presence (and persistence) of genotoxic factors in various organs of mice treated with chemicals. In quantitative comparative mutagenesis experiments using E. coli K12 and Chinese hamster cells treated under standardized conditions in vitro with 5 ethylating agents, there was no indication of an absolute correlation between the number of induced mutants per unit of dose in the bacteria and the mammalian cells. The ranking of mutagenic potency was, however, identical in bacteria and mammalian cells, namely, ENNG greater than ENU greater than or equal to DES greater than DEN congruent to EMS, the mutagenic activity of DEN being dependent on the presence of mammalian liver preparations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The mechanism of inhibition of protein synthesis in rat liver after dimethylnitrosamine (DMNA) administration was studied at the level of peptide-chain initiation by use of initiation-dependent amino acid incorporating systems. Ribosomal monomers, poly(A)-concontaining loss of acticity due to the DMNA treatment. The poly(A) RNA from monosomes and polysomes, and crude initiation factors from microsomes were prepared 2 h after a single dose of DMNA (75 mg/kg), and their activities in the production of new protein chains determined under conditions of nearly linear response. Monosomes and crude initiation factors from DMNA-treated rats were at least as active as those from controls. Preparations of poly(A)-containing RNA had a consistently higher template activity when prepared from polysomes instead of monosomes. However, in neither case was there any ltaining RNA was methylated by DMNA to about the same extent as the 18S and 28S rRNA. The methylation was consistently somewhat higher in the RNA preparations from monosomes than in those from polysomes.  相似文献   

12.
Development and homeostasis of organs and whole body is critically dependent on the circulatory system. In particular, the circulatory system, the railways shuttling oxygen and nutrients among various organs, is indispensible for inter-organ humoral communication. Since the modern view of the anatomy and mechanics of the circulatory system was established in 17th century, it has been assumed that humoral factors are carried to and from organs via vascular branches of the central arteries and veins running along the body axis. Over the past few decades, major advances have been made in understanding molecular and cellular mechanisms underlying the vascularization of organs. However, very little is known about how each organ is linked by vasculature (i.e., inter-organ vascular networks). In fact, the exact anatomy of inter-organ vascular networks has remained obscure. Herein, we report the identification of four distinct vessels, V1LP, V2LP, V3LP and V4LP, that bridge between two organs, liver and pancreas in developing zebrafish. We found that these inter-organ vessels can be classified into two types: direct and indirect types. The direct type vessels are those that bridge between two organs via single distinct vessel, to which V1LP and V2LP vessels belong. The indirect type bridges between two organs via separate branches that emanate from a stem vessel, and V3LP and V4LP vessels belong to this type. Our finding of V1LP, V2LP, V3LP and V4LP vessels provides the proof of the existence of inter-organ vascular networks. These and other yet-to-be-discovered inter-organ vascular networks may facilitate the direct exchange of humoral factors that are necessary for the coordinated growth, differentiation and homeostasis of the connected organs. It is also possible that the inter-organ vessels serve as tracks for their connected organs to follow during their growth to establish their relative positions and size differences.  相似文献   

13.
The DNA repair host-mediated assay was further calibrated by testing 7 chemotherapeutic agents known to possess carcinogenic activity, namely bleomycin (BLM), cis-diamminedichloroplatinum-II (cis-Pt), cyclophosphamide (CP), diethylstilboestrol (DES), isonicotinic acid hydrazide (isoniazid, INH), natulan (NAT) and mitomycin C (MMC). Differential survival of wild-type and uvrB/recA E. coli strains served as a measure of genotoxic activity. In in vitro assays, BLM, cis-Pt and MMC exhibited high genotoxic activity. The other 4 compounds had no measurable effect on the survival of the two strains, either with or without mouse liver preparations. In the host-mediated assays BLM, cis-Pt, MMC and also NAT induced strong killing of the DNA repair-deficient bacteria recovered from liver, spleen, lungs, kidneys and the blood of treated mice compared to the wild-type strain. The results are not indicative of large organ-specific differences in genotoxically active amounts of the drugs immediately after their application to the host animals. CP, INH and DES did not show geneotix activity in these assays even at very high exposure levels. To compare the genetic endpoint measured in the DNA repair assays, i.e. induction of repairable DNA damage, with the induction of gene mutations, the ability of the 7 drugs to induce valine-resistant (VALr) mutants in E. coli was measured in host-mediated assays under identical treatment conditions. INH showed considerable mutagenic activity in E. coli cells recovered from liver and spleen, while BLM and MMC induced a 3-4-fold increase in VALr mutants above spontaneous levels. The other compounds showed no mutagenic activity under these in vivo conditions. From these results it can be concluded that the type of primary DNA lesions produced by these chemotherapeutic agents (cross-links by MMC and cis-Pt, and strand breaks by BLM and possibly by NAT; base alkylation by INH) appears to determine whether a compound will be highly positive in the DNA repair assay as in the case of BLM, cis-Pt, MMC and NAT, and less effective in inducing mutations under similar conditions, or whether the opposite will occur, as in the case of INH; DES and CP probably do not interact sufficiently with bacterial DNA to show an effect in either of the genetic endpoints; and the present DNA repair host-mediated assay may represent a sensitive, rapid and economic method for monitoring genotoxic factors in various organs of experimental animals which have been treated with cytostatic drugs.  相似文献   

14.
Compounds of various chemical classes were comparatively assayed in the Ames reversion test with his- S. typhimurium strains TA1535, TA157 , TA1538, TA98, TA100, and, in part, TA97 , and in a DNA-repair test with trp- E. coli strains WP2 (repair-proficient), WP67 (uvrA- polA-) and CM871 (uvrA- recA- lexA-). A liquid micromethod procedure for the assessment of the minimal inhibitory concentration (MIC) of test compounds, using the same reagents as the Ames test, was set up and calibrated in its technical details. Other techniques (spot test and treat-and-plate method) were applied to a number of compounds in order to obtain more complete information on their DNA-damaging activity in E. coli. From a qualitative standpoint, the results obtained in the reversion test and in the DNA-repair test (liquid micromethod) were overlapping for 96 (59 positive and 37 negative) out of 135 compounds (71.1%). There was disagreement for 39 compounds (28.9%), 9 of which were positive only in the reversion test (8 requiring metabolic activation and 5 genotoxic in the treat-and-plate method). 30 compounds were positive only in the lethality test, showing a direct DNA-damaging activity, which in half of the cases was completely eliminated by S9 mix. Although the experimental protocol intentionally included several compounds already reported as nonmutagenic carcinogens or as noncarcinogenic mutagens, the overall accuracy was 64.5% for the reversion test and 72.4% for the DNA-repair test, as evaluated for 75 compounds classified according to their carcinogenic activity. Quantitation of results was obtained in the Ames test by relating the net number of revertants to nmoles of compound and in the DNA-repair test by means of a formula relating the difference and ratio of MICs in repair-proficient and -deficient bacteria to nmoles of compound. Following these criteria, the genotoxic potency varied over a 4.5 X 10(7)-fold range among compounds positive in the reversion test and over a 6 X 10(9)-fold range among compounds damaging E. coli DNA. The genotoxic potencies in the two bacterial systems were correlated within the majority of the chemical classes under scrutiny.  相似文献   

15.
The carcinogen dimethylnitrosamine (DMNA) is known to exhibit a high degree of strain, organ, age, and sex related tumor specificity in mice. Using microbial mutagenesis assays coupled with mouse tissue microsomal enzyme activation systems, evidence has been obtained that demonstrated a close relationship between the level of in vitro DMNA activation to a mutagen and in vivo tumor susceptibility. DMNA activation by liver, lung, and kidney microsomes from several mouse strains was compared by measuring the rate of mutagenic metabolites formed during incubation of the carcinogen in mutation assays using Salmonella typhimurium G-46 as the indicator microorganism.  相似文献   

16.
Single doses of DMNA from 8 to 15 mg/kg body weight (B.W.) were given in the feed, by stomach tube or by subcutaneous application to 37 foxes. The course and intensity of the disease was not influenced by the application route, but was directly related to the amount of DMNA given per kg body weight, and caused hemorrhagic centrolobular liver necrosis and acute vessel changes especially in the hepatic vein system. The possibility of liver regeneration after a single DMNA exposure depends on the degree of damage in the hepatic vein system. Some animals can recover from the acute disease caused by DMNA. But if the hepatic vessel changes are enough pronounced, progressive changes occur in the hepatic vein system eading to liver cirrhosis. The observation period of the foxes after a single exposure was from 13 to 380 days. LD50 should not be determined after a surviving time of 3 days but rather after 4 weeks. In our material LD50 was 10 mg DMNA/kg B.W. In an experiment over a longer period of time 18 foxes divided into 3 groups were given 2 weekly doses of DMNA in food. They were treated with daily estimated doses of 1.0, 0.2 and 0.1 mg DMNA/kg B.W., respectively. The foxes in Groups 1 and 2 developed ascites, jaundice and liver failure after intake of 45–70 mg DMNA/kg B.W. The foxes in Group 1 treated with 1 mg DMNA/kg B.W. showed centrolobular hemorrhagic liver necrosis and productive vessel changes in the hepatic vein system. The second group given 0.2 mg DMNA/kg B.W. developed hemorrhagic centrolobular necrosis which healed with fibrosis leading to cirrhosis and chronic occlusion in many of the hepatic veins. In addition noduli of chondroid lamellae and foci of hematopoietic tissue and early stages of hemagiomatous liver tumors were found in the liver. The group exposed with 0.1 mg DMNA/kg B.W./day did not develop hemorrhagic centrolobular liver necrosis, but thickening in the walls of the hepatic veins. After more than 3½ years of exposure multiple hemangiosarcomae were growing out from the changed vessel walls. In an experiment over a shorter time period with daily exposure of DMNA doses in the feed below 0.15 mg/kg B.W., all the foxes were completely healthy and only some showed beginning changes in the hepatic vein walls. Hematomae were often seen in foxes dying after a single DMNA dose. One fox treated with 0.1 mg DMNA/kg B.W. died of brain bleeding after 220 days of treatment. Chronic vessel changes were found in the heart and kidneys of the DMNA treated foxes. These results emphasize the fact that DMNA gives vessel changes of a more general nature.  相似文献   

17.
A rapid differential DNA-repair assay procedure was developed to investigate the biotransformation of xenobiotics in Drosophila melanogaster in vivo. Indicator of genotoxic activity was a pair of streptomycin-dependent Escherichia coli strains differing vastly in DNA repair capacity (uvr+/rec+ vs. uvrB/recA). Prior to the experiments with test compounds, mixtures of the two strains were injected into the abdomina of untreated animal hosts (male Berlin-K flies) and the time-dependent recovery kinetics determined. Subsequently, different aliphatic and aromatic nitrosamines were tested. Solutions of the compounds were injected simultaneously with the indicator cells. Three hours later, the flies were killed, homogenized and the induction of (repairable) DNA damage determined by comparison of the survival rates of the two strains in single animals. Eight carcinogenic compounds (nitrosodiethylamine, NDEA; nitrosodimethylamine, NDMA; nitrosodi-npropylamine, NDPA; nitrosodiethanolamine, NDELA; nitrosomethylaniline, NMA; 4-methyl-nitrosopiperidine, MNPIP; nitrosopyrrolidine, NPYR; nitrosomorpholine, NMOR) and one whose tumorigenic activities are still controversially discussed (nitrosodiphenylamine, NDPhA) induced dose-dependent differential killing effects in the present system. One agent which has not been found carcinogenic in rodents (2.6-dimethyl-nitrosopiperidiine. NDMPIP) gave negative results. The ranking order of genotoxic activities of the nitrosamines found in Drosophila in vivo is in good agreement with those of carcinogenic potencies established on the basis of experiments with rats. The most pronounced exceptions are the rather weak response towards NMA and the stronger DNA damaging activity of NMPIP compared to NDMA. Phenobarbital (5-ethyl-5-phenyl-2,4,6-trioxohepatahydropyramidine) (PB) feeding of the flies resulted in an increase of the DNA damaging potencies of all nitrosamines tested. Substantial enhancement of the induction of DNA damage was however, restricted to NDEA, NPYR and NMOR, whereas with nitrosodiphenylamine (NDPhA), NDELA and NDMA only a moderate (less than 25%) increase of differential killing effects was found. In the case of the two latter compounds, these results might be due to the fact that enzymes other than the MFO are involved in their activation. Attempts to localize the formation and/or distribution of metabolites in the bodies of fruitflies by separation of the tagmata of chemically treated animals and determination of genotoxic effects in the different segments indicate that the most pronounced effects occur in the abdomina whereas in heads and thoraxes comparatively lower activities are detectable.  相似文献   

18.
Hepatic microsomal fractions (microsomes) were prepared from male Sprague-Dawley rats. The effect of arachidonic acid on the conversion of the heterocyclic aromatic amine 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) to its genotoxic metabolites was investigated using a modified bacterial mutation assay (indicator: Salmonella typhimurium TA98). Arachidonic acid inhibited the mutagenicity of IQ without effect on the uptake of the active metabolites and/or on the DNA-repair processes within the bacterial cell. The activation of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and aflatoxin B1 (AFB1) was also inhibited by this polyunsaturated fatty acid.  相似文献   

19.
20.
IQ, a heterocyclic aromatic amine which is formed during the frying of meat, was prepared by chemical synthesis. Its genotoxic potential was studied in bacteria, Drosophila and in mice. A mutagenic effect of IQ (frameshift induction) was detected in Salmonella typhimurium in experiments without metabolic activation; this effect was several orders of magnitude lower than that observed in the presence of an activation system. Ames tests with liver-homogenate S9 fraction from PCB-induced mice and rats confirmed the high mutagenic potency of IQ metabolites (Kasai et al., 1980a). Comparative studies on diagnostic Salmonella strains revealed that the high frameshift-inducing activity is independent of the plasmid pkM101; it is, however, greatly reduced by an intact excision-repair system for DNA lesions. The mutagenic activity of the metabolite(s) formed in vitro by S9 mix has a half-life of ca. 14 min. In the fruit fly, Drosophila melanogaster, IQ induced when used at sublethal concentrations, X-chromosomal recessive lethal mutations in male germ cells in a dose-dependent manner. In mice, tests were performed to detect somatic mutations: chromosomal anomalies (micronuclei) in bone marrow, and gene mutations (affecting coat pigmentation) in mice exposed to IQ in utero. No genotoxic effects were observed in these assays. However, the formation of mutagenic metabolites in the liver of IQ-treated mice was unequivocally demonstrated in host-mediated assays using Salmonella as mutagen probes in mice. The data demonstrate genotoxic activity of IQ in prokaryotic and eukaryotic organisms. The possible reasons for the different response of mammalian systems in vivo and the Salmonella system are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号