首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon ? cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon.  相似文献   

2.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon. Received: 8 October 1996 / Accepted: 27 November 1996  相似文献   

3.
Lon is an ATP-dependent protease of Escherichia coli. The lon mutation has a pleiotropic phenotype: UV sensitivity, mucoidy, deficiency for lysogenization by bacteriophage lambda and P1, and lower efficiency in the degradation of abnormal proteins. All of these phenotypes are correlated with the loss of protease activity. Here we examine the effects of overproduction of one Lon substrate, SulA, and show that it protects two other substrates from degradation. To better understand this protection, we mutagenized the sulA gene and selected for mutants that have partially or totally lost their ability to saturate the Lon protease and thus can no longer protect another substrate. Some of the SulA mutants lost their ability to protect RcsA from degradation but could still protect the O thermosensitive mutant protein (Ots). All of the mutants retained their capacity to induce cell division inhibition. It was also found that deletion of the C-terminal end of SulA affected its activity but did not affect its susceptibility to Lon. We propose that Lon may have more than one specificity for peptide cleavage.  相似文献   

4.
To overproduce extremely unstable SulA protein, which is the cell-division inhibitor of Escherichia coli, we fused the sulA gene to the maltose-binding protein (MBP) fusion vectors with or without the signal sequence (plasmids pMAL-p-SulA and pMAL-c-SulA respectively). The amount of the full-length fusion protein expressed from the plasmid pMAL-p-SulA (pre-MBP-SulA) in E. coli was much larger than that expressed from the plasmid pMAL-c-SulA (MBP-SulA). A major amount of the pre-MBP-SulA fusion protein was expressed in a soluble form and affinity-purified by amylose resin. Since site-specific cleavage of the fusion protein with factor Xa resulted in the precipitation of SulA protein, the pre-MBP-SulA fusion protein was used to study the degradation of SulA protein by E. coli Lon protease in vitro. It was found that only the SulA portion of the fusion protein was degraded by Lon protease in an ATP-dependent manner. This result provides direct evidence that Lon protease plays an important role in the rapid degradation of SulA protein in cells.  相似文献   

5.
I S Seong  J Y Oh  S J Yoo  J H Seol  C H Chung 《FEBS letters》1999,456(1):211-214
HslVU is an ATP-dependent protease consisting of two multimeric components, the HslU ATPase and the HslV peptidase. To gain an insight into the role of HslVU in regulation of cell division, the reconstituted enzyme was incubated with SulA, an inhibitor of cell division in Escherichia coli, or its fusion protein with maltose binding protein (MBP). HslVU degraded both proteins upon incubation with ATP but not with its nonhydrolyzable analog, ATPgammaS, indicating that the degradation of SulA requires ATP hydrolysis. The pulse-chase experiment using an antibody raised against MBP-SulA revealed that the stability of SulA increased in hsl mutants and further increased in lon/hsl double mutants, indicating that SulA is an in vivo substrate of HslVU as well as of protease La (Lon). These results suggest that HslVU in addition to Lon plays an important role in regulation of cell division through degradation of SulA.  相似文献   

6.
Nishii W  Takahashi K 《FEBS letters》2003,553(3):351-354
HslVU is an ATP-dependent protease from Escherichia coli and known to degrade SulA, a cell division inhibitor, both in vivo and in vitro, like the ATP-dependent protease Lon. In this study, the cleavage specificity of HslVU toward SulA was investigated. The enzyme was shown to produce 58 peptides with various sizes (3-31 residues), not following the 'molecular ruler' model. Cleavage occurred at 39 peptide bonds preferentially after Leu in an ATP-dependent manner and in a processive fashion. Interestingly, the central and C-terminal regions of SulA, which are known to be important for the function of SulA, such as inhibition of cell division and molecular interaction with certain other proteins, were shown to be preferentially cleaved by HslVU, as well as by Lon, despite the fact that the peptide bond specificities of the two enzymes were distinct from each other.  相似文献   

7.
SulA protein is known to be one of the physiological substrates of Lon protease, an ATP-dependent protease from Escherichia coli. In this study, we investigated the cleavage specificity of Lon protease toward SulA protein. The enzyme was shown to cleave approximately 27 peptide bonds in the presence of ATP. Among them, six peptide bonds were cleaved preferentially in the early stage of digestion, which represented an apparently unique cleavage sites with mainly Leu and Ser residues at the P1, and P1' positions, respectively, and one or two Gln residues in positions P2-P5. They were located in the central region and partly in the C-terminal region, both of which are known to be important for the function of SulA, such as inhibition of cell growth and interaction with Lon protease, respectively. The other cleavage sites did not represent such consensus sequences, though hydrophobic or noncharged residues appeared to be relatively preferred at the P1 sites. On the other hand, the cleavage in the absence of ATP was very much slower, especially in the central region, than in the presence of ATP. The central region was predicted to be rich in alpha helix and beta sheet structures, suggesting that the enzyme required ATP for disrupting such structures prior to cleavage. Taken together, SulA is thought to contain such unique cleavage sites in its functionally and structurally important regions whose preferential cleavage accelerates the ATP-dependent degradation of the protein by Lon protease.  相似文献   

8.
Escherichia coli mutants lacking activities of all known cytosolic ATP-dependent proteases (Lon, ClpAP, ClpXP, and HslVU), due to double deletions [DeltahslVU and Delta(clpPX-lon)], cannot grow at low (30 degrees C) or very high (45 degrees C) temperatures, unlike those carrying either of the deletions. Such growth defects were particularly marked when the deletions were introduced into strain MG1655 or W3110. To examine the functions of HslVU and other proteases further, revertants that can grow at 30 degrees C were isolated from the multiple-protease mutant and characterized. The revertants were found to carry a suppressor affecting either ftsZ (encoding a key cell division protein) or sulA (encoding the SulA inhibitor, which binds and inhibits FtsZ). Whereas the ftsZ mutations were identical to a mutation known to produce a protein refractory to SulA inhibition, the sulA mutations affected the promoter-operator region, reducing synthesis of SulA. These results suggested that the growth defect of the parental double-deletion mutant at a low temperature was due to the accumulation of excess SulA without DNA-damaging treatment. Consistent with these results, SulA in the double-deletion mutant was much more stable than that in the Delta(clpPX-lon) mutant, suggesting that SulA can be degraded by HslVU. As expected, purified HslVU protease degraded SulA (fused to the maltose-binding protein) efficiently in an ATP-dependent manner. These results suggest that HslVU as well as Lon participates in the in vivo turnover of SulA and that HslVU becomes essential for growth when the Lon (and Clp) protease level is reduced below a critical threshold.  相似文献   

9.
Lon protease of Escherichia coli regulates a diverse set of physiological responses including cell division, capsule production, plasmid stability, and phage replication. Little is known about the mechanism of substrate recognition by Lon. To examine the interaction of Lon with two of its substrates, RcsA and SulA, we generated point mutations in lon which affected its substrate specificity. The most informative lon mutant overproduced capsular polysaccharide (RcsA stabilized) yet was resistant to DNA-damaging agents (SulA degraded). Immunoblots revealed that RcsA protein persisted in this mutant whereas SulA protein was rapidly degraded. The mutant contains a single-base change within lon leading to a single amino acid change of glutamate 240 to lysine. E240 is conserved among all Lon isolates and resides in a charged domain that has a high probability of adopting a coiled-coil conformation. This conformation, implicated in mediating protein-protein interactions, appears to confer substrate discriminator activity on Lon. We propose a model suggesting that this coiled-coil domain represents the discriminator site of Lon.  相似文献   

10.
A key step in the regulation of heat shock genes in Escherichia coli is the stress-dependent degradation of the heat shock promoter-specific sigma(32) subunit of RNA polymerase by the AAA protease, FtsH. Previous studies implicated the C termini of protein substrates, including sigma(32), as degradation signals for AAA proteases. We investigated the role of the C terminus of sigma(32) in FtsH-dependent degradation by analysis of C-terminally truncated sigma(32) mutant proteins. Deletion of the 5, 11, 15, and 21 C-terminal residues of sigma(32) did not affect degradation in vivo or in vitro. Furthermore, a peptide comprising the C-terminal 21 residues of sigma(32) was not degraded by FtsH in vitro and thus did not serve as a recognition sequence for the protease, while an unrelated peptide of similar length was efficiently degraded. The truncated sigma(32) mutant proteins remained capable of associating with DnaK and DnaJ in vitro but showed intermediate (5-amino-acid deletion) and strong (11-, 15-, and 21-amino-acid deletions) defects in association with RNA polymerase in vitro and biological activity in vivo. These results indicate an important role for the C terminus of sigma(32) in RNA polymerase binding but no essential role for FtsH-dependent degradation and association of chaperones.  相似文献   

11.
12.
13.
Lon protease from Escherichia coli degraded lambda N protein in a reaction mixture consisting of the two homogeneous proteins, ATP, and MgCl2 in 50 mM Tris, Ph 8.0. Genetic and biochemical data had previously indicated that N protein is a substrate for Lon protease in vivo (Gottesman, S., Gottesman, M., Shaw, J. E., and Pearson, M. L. (1981) Cell 24, 225-233). Under conditions used for N protein degradation, several lambda and E. coli proteins, including native proteins, oxidatively modified proteins, and cloned fragments of native proteins, were not degraded by Lon protease. Degradation of N protein occurred with catalytic amounts of Lon protease and required the presence of ATP or an analog of ATP. This is the first demonstration of the selective degradation of a physiological substrate by Lon protease in vitro. The turnover number for N protein degradation was approximately 60 +/- 10 min-1 at pH 8.0 in 50 mM Tris/HCl, 25 mM MgCl2 and 4 mM ATP. By comparison the turnover number for oxidized insulin B chain was 20 min-1 under these conditions. Kinetic studies suggest that N protein (S0.5 = 13 +/- 5 microM) is intermediate between oxidized insulin B chain (S0.5 = 160 +/- 10 microM) and methylated casein (S0.5 = 2.5 +/- 1 microM) in affinity for Lon protease. N protein was extensively degraded by Lon protease with an average of approximately six bonds cleaved per molecule. In N protein, as well as in oxidized insulin B chain and glucagon, Lon protease preferentially cut at bonds at which the carboxy group was contributed by an amino acid with an aliphatic side chain (leucine or alanine). However, not all such bonds of the substrates were cleaved, indicating that sequence or conformational determinants beyond the cleavage site affect the ability of Lon protease to degrade a protein.  相似文献   

14.
Lon protease degrades transfer-messenger RNA-tagged proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacterial trans translation is activated when translating ribosomes are unable to elongate or terminate properly. Small protein B (SmpB) and transfer-messenger RNA (tmRNA) are the two known factors required for and dedicated to trans translation. tmRNA, encoded by the ssrA gene, is a bifunctional molecule that acts both as a tRNA and as an mRNA during trans translation. The functions of tmRNA ensure that stalled ribosomes are rescued, the causative defective mRNAs are degraded, and the incomplete polypeptides are marked for targeted proteolysis. We present in vivo and in vitro evidence that demonstrates a direct role for the Lon ATP-dependent protease in the degradation of tmRNA-tagged proteins. In an endogenous protein tagging assay, lon mutants accumulated excessive levels of tmRNA-tagged proteins. In a reporter protein tagging assay with lambda-CI-N, the protein product of a nonstop mRNA construct designed to activate trans translation, lon mutant cells efficiently tagged the reporter protein, but the tagged protein exhibited increased stability. Similarly, a green fluorescent protein (GFP) construct containing a hard-coded C-terminal tmRNA tag (GFP-SsrA) exhibited increased stability in lon mutant cells. Most significantly, highly purified Lon preferentially degraded the tmRNA-tagged forms of proteins compared to the untagged forms. Based on these results, we conclude that Lon protease participates directly in the degradation of tmRNA-tagged proteins.  相似文献   

15.
Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell‐division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross‐linking and scanning for mutations that prevent sul20‐peptide binding. These N‐domain mutations limit the rates of proteolysis of model sul20‐tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon‐mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP‐dependent biological activities do not require translocation.  相似文献   

16.
The HslUV protease-chaperone complex degrades specific protein substrates in an ATP-dependent reaction. Current models propose that the HslU chaperone, a AAA protein of the Clp/Hsp100 family, binds and unfolds substrates and translocates the polypeptide into the catalytic cavity of the HslV protease. These processes are being characterized using substrates that are targeted to HslUV with a carboxy-terminal fusion of the natural substrate SulA or the carboxy-terminal 11 amino acid residues thereof. In a tandem fusion of green fluorescent protein with SulA, HslUV degrades the SulA moiety but not green fluorescent protein. Wild type and mutant Arc repressor variants are degraded; over a range of substrate stabilities, the specific rate of degradation and its dependence on substrate stability is similar to that of ClpXP. For a hyperstable Arc variant having an intermolecular disulfide bond, the rate of degradation by HslUV is an order of magnitude slower than by ClpXP. Similarity in degradation rates for a subset of substrates by HslUV and ClpXP suggests a similarity in mechanism of the apparent rate-limiting steps of unfolding and translocation by the chaperone components HslU and ClpX. The fall-off in degradation by HslUV for the more stable substrates that are degraded by ClpXP is consistent with the two systems acting on different spectra of biological substrates.  相似文献   

17.
18.
Escherichia coli Lon, an ATP-dependent AAA+ protease, recognizes and degrades many different substrates, including the RcsA and SulA regulatory proteins. More than a decade ago, the E240K mutation in the N domain of Lon was shown to prevent degradation of RcsA but not SulA in vivo. Here, we characterize the biochemical properties of the E240K mutant in vitro and present evidence that the effects of this mutation are complex. For example, LonE240K exists almost exclusively as a dodecamer, whereas wild-type Lon equilibrates between hexamers and dodecamers. Moreover, LonE240K displays degradation defects in vitro that do not correlate in any simple fashion with degron identity, substrate stability, or dodecamer formation. The Lon sequence segment near residue 240 is known to undergo nucleotide-dependent conformational changes, and our results suggest that this region may be important for coupling substrate binding with allosteric activation of Lon protease and ATPase activity.  相似文献   

19.
20.
Bacteriophage Mu repressor, which is stable in its wildtype form, can mutate to become sensitive to its Escherichia coli host ATP-dependent ClpXP protease. We further investigated the determinants of the mutant repressor's sensitivity to Clp. We show the crucial importance of a C-terminal, seven amino acid long sequence in which a single change is sufficient to decrease the rate of degradation of the protein. The sequence was fused at the C-terminal end of the CcdB and CcdA proteins encoded by plasmid F. CcdB, which is naturally stable, was unaffected, while CcdA, which is normally degraded by the Lon protease, became a substrate for ClpXP while remaining a substrate for Lon. In agreement with the current hypothesis on the mechanism of recognition of their substrates by energy- dependent proteases, these results support the existence, on the substrate polypeptides, of separate motifs responsible for recognition and cleavage by the protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号