首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Summary A total of 289 accessions of cultivated barley were assayed for ribosomal DNA (rDNA) polymorphisms. These accessions comprised four independent samples: (1) 79 entries from China, (2) 59 accessions from Ethiopia, (3) 59 entries from Tibet and (4) 92 entries representing 36 barley growing countries of the world (referred to as world sample). In all, 17 rDNA phenotypes (genotypes) were observed, which were composed 10 alleles at two rDNA loci, Rrn1 and Rrn2. The world sample contained the largest number of phenotypes and alleles and also demonstrated the highest level of diversity. Ribosomal DNA phenotypes 104, 112 and 107, 112 occurred at high frequencies worldwide. Allele 112 was the predominant allele of Rrn1 in all four samples, and 104 and 107 were the two major alleles of Rrn2 worldwide. The distributions of rDNA genotypes and alleles demonstrated a clear differentiation of two distinct barley groups: an Oriental group represented by the samples from China and Tibet, which is characterized by allele 107 at the Rrn2 locus (rDNA phenotype 107, 112); and an Occidental group, represented by Ethiopian and world samples, which is comprised mostly of allele 104 at the Rrn2 locus (rDNA phenotype 104, 112). The results also raised new questions concerning the phylogeny and evolution of cultivated barley.  相似文献   

2.
The variation in length of the intergenic spacer (IGS) region of the ribosomal DNA repeat unit was examined in 63 accessions of wild barley, Hordeum spontaneum, and seven accessions of cultivated barley, Hordeum vulgare. The accessions of wild barley were collected from ecologically diverse climatic and edaphic microsites in Israel, and the barley cultivars were those grown in India. Sixteen spacer-length variants (slvs) observed in the present study presumably belonged to two known rDNA loci (Rrn1 and Rrn2). Each accession had one or more variants, which together represented the rDNA phenotype. The rDNA phenotypes of wild barley accessions were widely diverse and differed substantially from those of cultivated barley. The slv phenotypes and the corresponding alleles were shown to be largely correlated with different climatic, edaphic and ecogeographical microsites and niches (the ”Evolution Canyon” at Lower Nahal Oren, Mount Carmel; and Tabigha, Eastern Upper Galilee Mountains), so that a particular rDNA phenotype of an accession could be used to predict the climate and soil to which the accession belonged. This sharp microsite ecogeographic variation in ribosomal DNA appears adaptive in nature, and is presumably driven by climatic and edaphic natural selection. Received: 1 March 2001 / Accepted: 21 May 2001  相似文献   

3.
InArabidopsis thaliana the ribosomal RNA genes (rRNA genes or rDNA) are clustered in tandemly repeated blocks in two nucleolus organizer regions (NORs). Cytogenetic analysis has shown that the NORs are localized on chromosome 2 (NOR 2) and 4 (NOR 4). Recently the map position of NOR 2 was determined using a RFLP which was larger than 100 kb. In the course of a fingerprint analysis of differentArabidopsis ecotypes we have detected four rDNA polymorphisms between the ecotypes Landsberg (La) and Niederzenz (Nd). Mapping of these polymorphisms using established segregating F2 populations reveals that all polymorphisms detected are dominant. Three of them map to the locus on the second chromosome that has been shown to harbour the NOR 2. The fourth polymorphism can be unambigously assigned to the upper arm of the fourth chromosome. This is the first polymorphism found which originates in the second rDNA cluster ofArabidopsis thaliana. It enables localization of NOR 4 and thus completes the mapping of rDNA genes in the NORs ofArabidopsis.  相似文献   

4.
InArabidopsis thaliana the ribosomal RNA genes (rRNA genes or rDNA) are clustered in tandemly repeated blocks in two nucleolus organizer regions (NORs). Cytogenetic analysis has shown that the NORs are localized on chromosome 2 (NOR 2) and 4 (NOR 4). Recently the map position of NOR 2 was determined using a RFLP which was larger than 100 kb. In the course of a fingerprint analysis of differentArabidopsis ecotypes we have detected four rDNA polymorphisms between the ecotypes Landsberg (La) and Niederzenz (Nd). Mapping of these polymorphisms using established segregating F2 populations reveals that all polymorphisms detected are dominant. Three of them map to the locus on the second chromosome that has been shown to harbour the NOR 2. The fourth polymorphism can be unambigously assigned to the upper arm of the fourth chromosome. This is the first polymorphism found which originates in the second rDNA cluster ofArabidopsis thaliana. It enables localization of NOR 4 and thus completes the mapping of rDNA genes in the NORs ofArabidopsis.  相似文献   

5.
Two types of intraspecific nucleolar dominance/suppression are described for barley,Hordeum vulgare L. When the nucleolus organizing regions (NORs) originally belonging to chromosomes 6 and 7 are combined by translocation in one chromosome, NOR 6 is dominant over NOR 7. Neither significant loss of rDNA nor its hypermethylation is the reason for the reduced nucleolus forming activity of NOR 7. Intrachromosomal NOR suppression probably does not occur in isochromosome 6s, which has two NORs 6 in one chromosome. Meiotic and somatic pairing of the homologous arms might be the reason for early fusion of their nucleoli and thus for the lower than expected maximum number of interphase nucleoli. Variable suppression of a partial NOR (63) is described for descendants of crosses between translocation lines with split NORs 6 and 7. In these cases also, the reduced activity of the partial NOR 63 is not due to deletion of rDNA as shown by in situ hybridization. Unstable methylation of NOR 63 in heterozygous F1 individuals is probably the cause of this phenomenon.  相似文献   

6.
Doubled haploids (DH) were generated from reciprocal F1 hybrids which were heterozygous for alleles at the Nor-H3 locus on chromosome 5H of barley. The r-DNA alleles did not deviate significantly from the expected 1:1 ratio and the DH progenies were classified into two groups based on the allelic constitution of the Nor-H3 locus. The DHs were grown in a randomized, replicated field experiment and a range of agronomic and quality traits were recorded. The Nor-H3 locus was associated with a significant portion of the genetic variation for: yield, thousand corn weight, water sensitivity and milling energy requirement of the grain. However, the magnitude of the differences between groups was dependent on the direction of the cross. The milling energy requirement of the grain was consistently associated with alleles at the Nor-H3 locus. These results are presented in relation to the dynamics of rDNA evolution and variability. The potential of molecular markers in conjunction with doubled haploids to map quantitative traits in barley is also discussed.  相似文献   

7.
The suitability of barley ( Hordeum vulgare L.) grain for malting depends on many criteria, including the size, shape and uniformity of the kernels. Here, image analysis was used to measure kernel size and shape attributes (area, perimeter, length, width, F-circle and F-shape) in grain samples of 140 doubled-haploid lines from a two-rowed (cv Harrington) by six-rowed (cv Morex) barley cross. Interval mapping was used to map quantitative trait loci (QTLs) affecting the means and within-sample standard deviations of these attributes using a 107-marker genome map. Regions affecting one or more kernel size and shape traits were detected on all seven chromosomes. These included one near the vrs1 locus on chromosome 2 and one near the int-c locus on chromosome 4. Some, but not all, of the QTLs exhibited interactions with the environment and some QTLs affected the within-sample variability of kernel size and shape without affecting average kernel size and shape. When QTL analysis was conducted using data from only the two-rowed lines, the region on chromosome 2 was not detected but QTLs were detected elsewhere in the genome, including some that had not been detected in the analysis of the whole population. Analysis of only the six-rowed lines did not detect any QTLs affecting kernel size and shape attributes. QTL alleles that made kernels larger and/or rounder also tended to improve malt quality and QTL alleles that increased the variability of kernel size were associated with poor malt quality.  相似文献   

8.
We cytologically characterized the nucleolar organizer region (NOR) on the bivalent in the yeast Saccharomyces cerevisiae. We used staining with 4'-6-diamidino-2-phenylindole (DAPI), chromomycin A3, and silver nitrate and in situ hybridization technique and utilized a video-intensified microscope system with an ultra-high-sensitive video camera. The results showed that of 16 bivalents of S. cerevisiae, the longest was a recognizable nucleolar chromosome which has an annular and synaptonemal complexless NOR in its submedian portion. The NOR was comprised of 2.65 X 10(9) D DNA which corresponded to 118 copies per haploid of rDNA repeating units. This evidence is discussed in terms of the possible participation of the annular NOR in suppressing the meiotic recombination of the rDNA gene clusters.  相似文献   

9.
D. K. Butler 《Genetics》1992,131(3):581-592
In wild-type strains of Neurospora crassa, the rDNA is located at a single site in the genome called the nucleolus organizer region (NOR), which forms a terminal segment on linkage group (LG) V. In the quasiterminal translocation strain T(I;V)AR190, most of the right arm of LG I moved to the distal tip of the NOR, and one or a few rDNA repeat units are moved to the truncated right arm of LG I. I report here that, in partial diploid strains derived from T(I;V)AR190, large terminal deletions result from chromosome breakage in the NOR. In most of these partial diploids, chromosome breakage is apparently frequent and the breakpoints occur in many parts of the NOR. The rDNA ends resulting from chromosome breakage are "healed" by the addition of new telomeres. Significantly, the presence of ectopic rDNA creates a new site of chromosome breakage in the genome of partial diploids. These results raise the possibility that, under certain conditions, rDNA is a region of fragility in eukaryotic chromosomes.  相似文献   

10.
Hatanaka T  Galetti PM 《Genetica》2004,122(3):239-244
A single NOR-bearing chromosome pair was identified by silver nitrate staining in a previous study of the fish Prochilodus argenteus from the S ã o Francisco River (MG, Brazil), with a third metacentric chromosome sporadically bearing active NOR. The present study focused on an analysis of the chromosomal localization of both the major (45S) and the minor (5S) rRNA genes using FISH. The use of the 18S rDNA probe confirmed the previous Ag-NOR sites interstitially located in a large metacentric pair and also identified up to three other sites located in the telomeric regions of distinct chromosomes, characterizing an interindividual variation of these sites. In addition, the 5S rDNA site was revealed adjacent to the major NOR site, identified at the end of the large Ag-NOR bearing metacentric chromosome. In a few metaphases, an additional weak hybridization signal was observed in a third chromosome, possibly indicating the presence of another 5S rDNA cluster. Despite a lower karyotype diversification (2n=54 and FN=108) often observed among species of Prochilodontidae, variations involving both 45S and 5S rRNA genes could play an important role in their chromosome diversification.  相似文献   

11.
The position and the number of 18S-5.8S-26S and 5S rDNA loci, characterization of nucleolar organizing region (NOR)-associated heterochromatin and NOR activity assessment are given for six south-eastern Adriatic populations of Allium commutatum Guss. The karyotype characteristics were identical for all the populations studied, even those of distant islands. Diploid karyotypes (2 n = 16) always possessed two NOR-bearing chromosome pairs with pericentric and median secondary constrictions (SCs) on the short arm of the chromosomes VII and VIII. Fluorescent in situ hybridization (FISH) confirmed that these were the only sites of 18S-5.8S-26S rRNA genes. NOR-associated heterochromatin was of the constitutive character as shown after C-banding. Differential fluorochrome banding with Chromomycin A3 (CMA) and 4,6-diamidino-2-phenylindole (DAPI) revealed that this heterochromatin comprises both GC- and AT-rich DNA segments. Heteromorphism of C- and CMA-bands was noticed between homologous NOR-bearing chromosomes. The maximum number of four active NORs was correlated with the maximum number of four nucleoli in interphase. Variability of NOR-activity, expressed as number and size of silver stained NORs, existed between cells and between individuals of the same population. The different size of homologous and nonhomologous silver stained NORs was correlated with the extension of SCs. The only 5S rDNA locus was in an intercalary position on short arm of the chromosome VI, at the region of AT-rich constitutive heterochromatin. Dimorphism of C-bands and DAPI/Hoechst(H)-fluorescent bands was noticed between homologous chromosomes VI. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 99–108.  相似文献   

12.
Summary The genetic mechanism controlling the inheritance of single and multiple spacer-length variant (slv) phenotypes in barley was investigated in six F2 segregating populations. The results indicated that two independently assorting loci, each with co-dominant alleles, govern genetic variability for rDNA in barley regardless of the number of bands expressed by a given phenotype. The following chromosomal locations are proposed: sl variants 1, 4, 5, 6, and 7 on chromosome 7, and sl variants 7, 8, 9, 12, and 13 on chromosome 6; sl variant 7 is thus located on both of the chromosomes.  相似文献   

13.
We have analysed trisomic pea plants by DNA/ DNA hybridization techniques, exploiting the copy number excess of DNA sequences in trisomics, together with a knowledge of their genetics, in order to address problems in the correlation of genetic and cytogenetic information. One such long-standing problem in pea genetics is the assignment of one rDNA locus (Rrn2) to a linkage group on chromosome 7. Our results show that Rrn2 does not reside on the same chromosome as Lg-1 or Vc-2 which we have previously shown to be linked to r, a linkage group 7 specific marker.  相似文献   

14.
Tolerance to barley yellow dwarf virus (BYDV) in five Ethiopian barley genotypes was conditioned by major genes which apparently occurred at, or near, the same chromosome locus in each genotype. The genes or alleles differed in effectiveness, one providing a high, three an intermediate and one a low level of tolerance. In plants having a slow rate of growth, the effectiveness of the tolerance genes tended to be masked, but the effectiveness of the gene or allele which provided the highest level of tolerance was masked to a lesser extent than that of genes or alleles providing low or intermediate levels of tolerance.  相似文献   

15.
The condensin complex has a fundamental role in chromosome dynamics. In this study, we report that accumulation of Schizosaccharomyces pombe condensin at mitotic kinetochores and ribosomal DNAs (rDNAs) occurs in multiple steps and is necessary for normal segregation of the sister kinetochores and rDNAs. Nuclear entry of condensin at the onset of mitosis requires Cut15/importin alpha and Cdc2 phosphorylation. Ark1/aurora and Cut17/Bir1/survivin are needed to dock the condensin at both the kinetochores and rDNAs. Furthermore, proteins that are necessary to form the chromatin architecture of the kinetochores (Mis6, Cnp1, and Mis13) and rDNAs (Nuc1 and Acr1) are required for condensin to accumulate specifically at these sites. Acr1 (accumulation of condensin at rDNA 1) is an rDNA upstream sequence binding protein that physically interacts with Rrn5, Rrn11, Rrn7, and Spp27 and is required for the proper accumulation of Nuc1 at rDNAs. The mechanism of condensin accumulation at the kinetochores may be conserved, as human condensin II fails to accumulate at kinetochores in hMis6 RNA interference-treated cells.  相似文献   

16.
Summary DNA restriction endonuclease fragment analysis is used to examine the genetic organization, inheritance and linkage associations of the ribosomal DNA in pea. The substantial variation observed in the length of the intergenic spacer region is shown to segregate in Mendelian fashion involving two independent genetic loci, designated Rrn1 and Rrn2. Linkage between Rrn1 and two marker loci on chromosome 4 establishes the approximate location of this tandem array. Rrn2 shows linkage with a set of isozyme loci which assort independently of other markers on all seven chromosomes. Combining these observations with previous cytological data, we suggest that Rrn2 and the isozyme loci linked to it constitute a new linkage group on chromosome 7. The general absence of spacer length classes common to both rRNA loci in any of the lines we examined indicates that little or no genetic exchange occurs between the nonhomologous nucleolar organizer regions.  相似文献   

17.
18.
19.
20.
We examined chromosomal distribution of major ribosomal DNAs (rDNAs), clustered in the nucleolar organizer regions (NORs), in 18 species of moths and butterflies using fluorescence in situ hybridization with a codling moth (Cydia pomonella) 18S rDNA probe. Most species showed one or two rDNA clusters in their haploid karyotype but exceptions with 4–11 clusters also occurred. Our results in a compilation with previous data revealed dynamic evolution of rDNA distribution in Lepidoptera except Noctuoidea, which showed a highly uniform rDNA pattern. In karyotypes with one NOR, interstitial location of rDNA prevailed, whereas two-NOR karyotypes showed mostly terminally located rDNA clusters. A possible origin of the single interstitial NOR by fusion between two NOR-chromosomes with terminal rDNA clusters lacks support in available data. In some species, spreading of rDNA to new, mostly terminal chromosome regions was found. The multiplication of rDNA clusters without alteration of chromosome numbers rules out chromosome fissions as a major mechanism of rDNA expansion. Based on rDNA dynamics in Lepidoptera and considering the role of ordered nuclear architecture in karyotype evolution, we propose ectopic recombination, i.e., homologous recombination between repetitive sequences of non-homologous chromosomes, as a primary motive force in rDNA repatterning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号