首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin L  Park M  York DA 《Peptides》2007,28(3):643-649
Enterostatin injected into the amygdala selectively reduces dietary fat intake by an action that involves a serotonergic component in the paraventricular nucleus. We have investigated the role of melanocortin signaling in the response to enterostatin by studies in melanocortin 4 receptor (MC4R) knock out mice and by the use of the MC4R and MC3R antagonist SHU9119, and by neurochemical phenotyping of enterostatin activated cells. We also determined the effect of enterostatin in vivo on the expression of AgRP in the hypothalamus and amygdala of rats and in culture on a GT1-7 neuronal cell line. Enterostatin had no effect on food intake in MC4R knock out mice. SHU9119 i.c.v. blocked the feeding response to amygdala enterostatin in rats. Amygdala enterostatin induced fos activation in alpha-melanocyte stimulating hormone (alpha-MSH) neurons in the arcuate nucleus. Enterostatin also reduced the expression of AgRP in the hypothalamus and amygdala and in GT1-7 cells. These data suggest enterostatin inhibits dietary fat intake through a melanocortin signaling pathway.  相似文献   

2.
To evaluate whether MTII, a melanocortin receptor 3/4 agonist, is working in hypophagic and hypothermogenic obese model, we measured food intake, body weight, oxygen consumption, and fat mass following intracerebroventricular (i.c.v.) infusion of MTII in monosodium glutamate (MSG)-induced obese rats. MTII, or artificial cerebrospinal fluid (aCSF), was infused into i.c.v. with an osmotic minipump for 1 week. MSG-obese rats were induced by neonatal injection of MSG. Five-month-old MSG rats were characterized by hypophagia, lower oxygen consumption, hyperleptinemia, and obesity compared to age-matched control rats. The infusion of MTII decreased their food intake, visceral fat, and body weight in MSG-obese rats compared with aCSF-infused rats. The oxygen consumption was increased by MTII treatment in MSG-obese rats compared with aCSF as well as pair fed (PF) rats. Interestingly, these leptin-like effects of MTII were greater in MSG-obese rats than in controls, which might be related to the increased expression of melanocortin receptor 4 (MC4R) in the hypothalamus of MSG-obese rats. Our results suggested that both anorexic and thermogenic mechanisms were activated by MTII in the MSG-obese rats and contributed to the decrease in body weight and fat mass. Moreover, there was a sensitization to MTII caused by upregulation of the melanocortin receptor in the MSG-obese rats.  相似文献   

3.
Della-Fera MA  Baile CA 《Peptides》2005,26(10):1782-1787
Leptin has a wide range of effects on physiological functions related to the regulation of body energy balance. Many of leptin's effects are mediated through neuropeptide-containing neurons and neuropeptide receptors in the hypothalamus. The melanocortin system includes both agonist (alpha-melanocyte stimulating hormone, alphaMSH) and antagonist peptides (agouti related peptide, AGRP). Increased melanocortin receptor stimulation following leptin administration plays an important role in leptin-induced hypophagia and increased sympathetic nervous system activity and is partly responsible for leptin-induced weight loss. However, melanocortins do not appear to mediate some of the more striking centrally-mediated effects of leptin on adipose tissue, including adipose tissue apoptosis, that lead to the extensive depletion of fat.  相似文献   

4.
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.  相似文献   

5.
Melanocortins mediate the effects of leptin in the central nervous system (CNS) and regulate energy balance through the MCR3 and MCR4 receptors. Here, we examined the specific role of MCR4 in modulating fat consumption. In a three-choice feeding model, the non-selective melanocortin agonist MT-II decreased fat consumption preferentially and the effect was absent in mice deficient in MCR4. Further, an agonist selective for the MCR4 subtype [Danho W, Swistok J, Cheung A, Chu XJ, Wang Y, Chen L, et al. Highly selective cyclic peptides for the melanocortin-4 receptor: design, synthesis, bioactive conformation and pharmacological evaluation as anti-obesity agents. In: Lebl M, Houghten R, editors. Peptides: the wave of the future. Am. Peptide Soc., 2001. p. 701-703.] also decreased dietary fat intake in a MCR4-dependent manner. Thus, MCR4 activation is both necessary and sufficient for the control of dietary fat intake by melanocortin signals and may provide a pharmacological means to control the consumption of fatty foods.  相似文献   

6.
Schuhler S  Ebling FJ 《Peptides》2006,27(2):301-309
Siberian hamsters express photoperiod-regulated seasonal cycles of body weight and food intake, providing an opportunity to study the role of melanocortin systems in regulating long-term adaptive changes in energy metabolism. These hamsters accumulate intraperitoneal fat reserves when kept in long summer photoperiods, but show a profound long-term decrease in food intake and body weight when exposed to a short winter photoperiod. Icv administration of a MC3/4-R agonist (MTII) potently suppresses food intake in hamsters in both the obese and lean state, indicating the potential for melanocortin systems to regulate energy metabolism in the hypothalamus of the Siberian hamster. Icv treatment with the melanocortin antagonist SHU9119 increases food intake in both seasonal states. Moreover, hamsters bearing neurotoxic lesions, which destroy the majority of POMC expressing neurons in the arcuate nucleus are still able to show seasonal regulation of body weight. These studies in a seasonal model substantiate the view that endogenous melanocortin systems exert a tonic inhibition of food intake in mammals. The observations that this melanocortin tone occurs to a similar extent in both an anabolic state induced by a long day photoperiod, and in a catabolic state induced by a short day photoperiod, suggests that alterations in endogenous melanocortin tone are not the primary cause of the lipolysis, weight-loss and hypophagia which characterize the establishment of the short day-induced overwintering state.  相似文献   

7.
Despite high leptin levels, most obese humans and rodents lack responsiveness to its appetite-suppressing effects. We demonstrate that leptin modulates NPY/AgRP and alpha-MSH secretion from the ARH of lean mice. High-fat diet-induced obese (DIO) mice have normal ObRb levels and increased SOCS-3 levels, but leptin fails to modulate peptide secretion and any element of the leptin signaling cascade. Despite this leptin resistance, the melanocortin system downstream of the ARH in DIO mice is over-responsive to melanocortin agonists, probably due to upregulation of MC4R. Lastly, we show that by decreasing the fat content of the mouse's diet, leptin responsiveness of NPY/AgRP and POMC neurons recovered simultaneously, with mice regaining normal leptin sensitivity and glycemic control. These results highlight the physiological importance of leptin sensing in the melanocortin circuits and show that their loss of leptin sensing likely contributes to the pathology of leptin resistance.  相似文献   

8.
Joppa MA  Gogas KR  Foster AC  Markison S 《Peptides》2007,28(3):636-642
Cachexia is a clinical wasting syndrome that occurs in multiple disease states, and is associated with anorexia and a progressive loss of body fat and lean mass. The development of new therapeutics for this disorder is needed due to poor efficacy and multiple side effects of current therapies. The pivotal role played by the central melanocortin system in regulating body weight has made this an attractive target for novel cachexia therapies. The mixed melanocortin receptor antagonist AgRP is an endogenous peptide that induces hyperphagia. Here, we used AgRP(83-132) to investigate the ability of melanocortin antagonism to protect against clinical features of cachexia in two distinct animal models. In an acute model, food intake and body weight gain were reduced in mice exposed to radiation (300 RAD), and delivery of AgRP(83-132) into the lateral cerebral ventricle prevented these effects. In a chronic tumor cachexia model, adult mice were injected subcutaneously with a cell line derived from murine colon-26 adenocarcinoma. Typical of cachexia, tumor-bearing mice progressively reduced body weight and food intake, and gained significantly less muscle mass than controls. Administration of AgRP(83-132) into the lateral ventricles significantly increased body weight and food intake, and changes in muscle mass were similar to the tumor-free control mice. These findings support the idea that antagonism of the central melanocortin system can reduce the negative impact of cachexia and radiation therapy.  相似文献   

9.
Signaling via the type 4-melanocortin receptor (MC4R) is an important determinant of body weight in mice and humans, where loss of function mutations lead to significant obesity. Humans with mutations in the MC4R experience an increase in lean mass. However, the simultaneous accrual of fat mass in such individuals may contribute to this effect via mechanical loading. We therefore examined the relationship of fat mass and lean mass in mice lacking the type-4 melanocortin receptor (MC4RKO). We demonstrate that MC4RKO mice display increased lean body mass. Further, this is not dependent on changes in adipose mass, as MC4RKO mice possess more lean body mass than diet-induced obese (DIO) wild type mice with equivalent fat mass. To examine potential sources of the increased lean mass in MC4RKO mice, bone mass and strength were examined in MC4RKO mice. Both parameters increase with age in MC4RKO mice, which likely contributes to increases in lean body mass. We functionally characterized the increased lean mass in MC4RKO mice by examining their capacity for treadmill running. MC4R deficiency results in a decrease in exercise performance. No changes in the ratio of oxidative to glycolytic fibers were seen, however MC4RKO mice demonstrate a significantly reduced heart rate, which may underlie their impaired exercise performance. The reduced exercise capacity we report in the MC4RKO mouse has potential clinical ramifications, as efforts to control body weight in humans with melanocortin deficiency may be ineffective due to poor tolerance for physical activity.  相似文献   

10.
Zhang Y  Scarpace PJ 《Peptides》2006,27(2):350-364
We identified that leptin resistance in aged-obese rats has both peripheral and central components. The central resistance is characterized by diminished hypothalamic leptin receptors and impaired leptin signal transduction. We developed a new model of leptin-induced leptin resistance in which application of the central leptin gene delivery produces unabated hypothalamic leptin over-expression. The chronic central elevation of leptin precipitates leptin resistance in young animals devoid of obesity and exacerbates it in mature or aged animals with obesity. Despite leptin resistance, our aged obese, DIO, and leptin-induced leptin resistant rats were fully responsive to central pharmacological melanocortin activation. We propose that the central leptin resistance resides between leptin receptor and melanocortin receptor activation. Our central POMC gene therapy overcame leptin resistance, producing weight and fat loss and improved insulin sensitivity in obese Zucker and aged rats. This success highlights the central melanocortin system as a useful drug target for combating obesity.  相似文献   

11.
Intramuscular fat (IMF) content plays an important role in meat quality. Many genes involved in lipid and energy metabolism were identified as candidate genes for IMF deposition, since genetic polymorphisms within these genes were associated with IMF content. However, there is less information on the expression levels of these genes in the muscle tissue. This study aimed at investigating the expression levels of sterol regulating element binding protein-1c (SREBP-1c), diacylglycerol acyltransferase (DGAT-1), heart-fatty acids binding protein (H-FABP), leptin receptor (LEPR) and melanocortin 4 receptor (MC4R) genes and proteins in two divergent Banna mini-pig inbred lines (BMIL). A similar growth performance was found in both the fat and the lean BMIL. The fat meat and IMF content in the fat BMIL were significantly higher than in the lean BMIL, but the lean meat content was lower. The serum triacylglycerol (TAG) and free fatty acid (FFA) contents were significantly higher in the fat than in the lean BMIL. The expression levels of SREBP-1c, DGAT-1 and H-FABP genes and proteins in fat BMIL were increased compared to the lean BMIL. However, the expression levels of LEPR and MC4R genes and proteins were lower.  相似文献   

12.
Obesity is characterized by an excess storage of body fat and promotes the risk for complex disease traits such as diabetes mellitus and cardiovascular diseases. The obesity prevalence in Europe is rising and meanwhile ranges from 10 to 20% in men and 15–25% in women. Body fat accumulation occurs in states of positive energy balance and is favored by interactions among environmental, psychosocial and genetic factors. Energy balance is regulated by a complex neuronal network of anorexigenic and orexigenic neurons which integrates peripheral and central hormonal and neuronal signals relaying information on the metabolic status of organs and tissues in the body. A key component of this network is the central melanocortin pathway in the hypothalamus that elicits metabolic and behavioral adaptations for the maintenance of energy homeostasis. Genetic defects in this system cause obesity in mice and humans. In this review we emphasize mouse models with spontaneous natural mutations as well as targeted mutations that contributed to our understanding of the central melanocortin system function in the control of energy balance.  相似文献   

13.
To examine the role of the brain stem melanocortin system in long-term energy regulation, we assessed the effects of overproduction of proopiomelanocortin (POMC) in the caudal brain stem of F344xBN rats with adult-onset obesity. Recombinant adeno-associated viral vector encoding POMC gene was delivered to the nucleus of solitary tract (NTS) in the hindbrain, and food intake, body weight, glucose and fat metabolism, brown adipose tissue thermogenesis, and mRNA levels of neuropeptides and melanocortin receptors were assessed. POMC delivery resulted in sustained reduction in food intake and body weight over 42 days and improved insulin sensitivity. At death, in recombinant adeno-associated viral vector-POMC-treated rats vs. control rats, alpha-melanocyte-stimulating hormone in NTS increased nearly 21-fold, whereas hypothalamic alpha-melanocyte-stimulating hormone remained unchanged. Visceral adiposity decreased by 37%; tissue triglyceride content diminished by 26% and 47% in liver and muscle, respectively; serum triglyceride and nonesterified fatty acids were reduced by 35% and 34%, respectively; phosphorylation of acetyl-CoA carboxylase was elevated by 63% in soleus muscle; brown adipose tissue uncoupling protein 1 increased by 30%; and melanocortin 3 receptor expression declined by 60%, whereas neuropeptide Y, agouti-related protein, and MC4 receptor mRNA levels were unchanged in the NTS. In conclusion, POMC overexpression in the NTS produces a characteristic unabated hypophagia that is uniquely different from the anorexic tachyphylaxis following POMC overexpression in the hypothalamus. The sustained anorectic response may result from absence of compensatory elements in the NTS, such as increased agouti-related protein expression, suggesting melanocortin activation of the brain stem may be a viable strategy to alleviate obesity.  相似文献   

14.
15.
Martin NM  Smith KL  Bloom SR  Small CJ 《Peptides》2006,27(2):333-339
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.  相似文献   

16.
Todorovic A  Haskell-Luevano C 《Peptides》2005,26(10):2026-2036
The melanocortin system (MC) is implicated in the regulation of a variety of physiological pathways including pigmentation, steroid function, energy homeostasis, food intake, obesity, cardiovascular, sexual function, and normal gland regulation. The melanocortin system consists of five receptors identified to date (MC1-5R), melanocortin agonists derived from the pro-opiomelanocortin prohormone (POMC) and two naturally existing antagonists. Melanocortin receptor ligand structure-activity studies have been performed since the 1960s, primarily focused on the pigmentation aspect of physiology. During the 1990s, the melanocortin-4 receptor was identified to play a significant physiological role in the regulation of both food intake and obesity. Subsequently, a concerted drug design effort has focused on the design and discovery of melanocortin receptor small molecules. Herein, we present an overview of melanocortin receptor heterocyclic small molecules.  相似文献   

17.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

18.
A novel hybrid melanocortin pharmacophore was designed based on the topographical similarities between the pharmacophores of Agouti related protein (AGRP) an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. When employed in two different 23-membered macrocyclic lactam peptide templates, the designed hybrid AGRP/MSH pharmacophore yielded non-competitive ligands with nanomolar range binding affinities. The topography-based pharmacophore hybridization strategy will prove useful in development of unique non-competitive melanocortin receptor modulators.  相似文献   

19.
Kim KS  Lee JJ  Shin HY  Choi BH  Lee CK  Kim JJ  Cho BW  Kim TH 《Animal genetics》2006,37(4):419-421
The aim of this study was to analyse the combined effect of melanocortin 4 receptor (MC4R) and high mobility group AT-hook 1 (HMGA1) polymorphisms on growth and fatness traits in Duroc pigs. No significant interaction was observed between MC4R and HMGA1 for back-fat traits. An additive mode of inheritance of both gene effects was found for average daily gain and lean meat content. Maximum mean differences from combined genotypic effects were over 2 mm for back fat, 70 g/day for average daily gain and 2% for lean meat content. Therefore, utilization of polymorphisms in both MC4R and HMGA1 for marker-assisted selection could result in an economic benefit to the pig industry.  相似文献   

20.
Zhou L  Williams T  Lachey JL  Kishi T  Cowley MA  Heisler LK 《Peptides》2005,26(10):1728-1732
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号