首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new polypeptide components which exhibited an analgesic effect in experiments on mice were isolated from the Heteractis crispa sea tropical anemone by the combination of chromatographic methods. The APHC2 and APHC3 new polypeptides consisted of 56 amino acid residues and contained six cysteine residues. Their complete amino acid sequence was determined by the methods of Edman sequencing, mass spectrometry, and peptide mapping. An analysis of the primary structure of the new peptides allowed for their attribution to a large group of trypsin inhibitors of the Kunitz type. An interesting biological function of the new polypeptides was their analgesic effect on mammals, which is possibly realized via the modulation of the activity of the TRPV1 receptor and was not associated with the residual inhibiting activity towards trypsin and chymotrypsin. The analgesic activity of the APHC3 polypeptide was measured on the hot plate model of acute pain and was significantly higher than that of APHC2. Methods of preparation of the recombinant analogues were created for both polypeptides.  相似文献   

2.
Using methods of molecular biology we defined the structures of the 31 sea anemone Heteractis crispa genes encoding polypeptides which are structurally homologous to the Kunitz proteinase inhibitor family. Identified amino acid sequences have point residue substitutions, high degree of homology with sequences of known H. crispa Kunitz family members, and represent a combinatorial library of polypeptides. We generated their three-dimensional structures by homologous modeling methods. Analysis of their molecular electrostatic potential enabled us to divide given polypeptides into three clusters. One of them includes polypeptides APHC1, APHC2 and APHC3, which were earlier shown to possess a unique property of inhibiting of the pain vanilloid receptor TRPV1 in vitro and providing the analgesic effects in vivo in addition to their trypsin inhibitory activity. Molecular docking made possible establishing the spatial structure of the complexes, the nature of the polypeptides binding with TRPV1, as well as functionally important structural elements involved in the complex formation. Structural models have enabled us to propose a hypothesis contributing to understanding the APHC1-3 impact mechanism for the pain signals transduction by TRPV1: apparently, there is an increase of the receptor relaxation time resulted in binding of its two chains with the polypeptide molecule, which disrupt the functioning of the TRPV1 and leads to partial inhibition of signal transduction in electrophysiological experiments.  相似文献   

3.
Venomous animals from distinct phyla such as spiders, scorpions, snakes, cone snails, or sea anemones produce small toxic proteins interacting with a variety of cell targets. Their bites often cause pain. One of the ways of pain generation is the activation of TRPV1 channels. Screening of 30 different venoms from spiders and sea anemones for modulation of TRPV1 activity revealed inhibitors in tropical sea anemone Heteractis crispa venom. Several separation steps resulted in isolation of an inhibiting compound. This is a 56-residue-long polypeptide named APHC1 that has a Bos taurus trypsin inhibitor (BPTI)/Kunitz-type fold, mostly represented by serine protease inhibitors and ion channel blockers. APHC1 acted as a partial antagonist of capsaicin-induced currents (32 +/- 9% inhibition) with half-maximal effective concentration (EC(50)) 54 +/- 4 nm. In vivo, a 0.1 mg/kg dose of APHC1 significantly prolonged tail-flick latency and reduced capsaicin-induced acute pain. Therefore, our results can make an important contribution to the research into molecular mechanisms of TRPV1 modulation and help to solve the problem of overactivity of this receptor during a number of pathological processes in the organism.  相似文献   

4.
Using methods of molecular biology we defined the structures of the 31 sea anemone Heteractis crispa genes encoding polypeptides which are structurally homologous to the Kunitz protease inhibitor family. The identified sequences have single-point amino acid substitutions, a high degree of homology with sequences of known Kunitz family members from H. crispa, and represent a combinatorial library of polypeptides. We generated their three-dimensional structures by methods of homology modeling. Analysis of their molecular electrostatic potential allowed the division of the polypeptides into three clusters. One of them includes polypeptides APHC1, APHC2, and APHC3 which have been shown to possess, in addition to their trypsin inhibitory activity, a unique property of inhibiting the pain vanilloid receptor TRPV1 in vitro and providing the analgesic effects in vivo. The spatial structure of the polypeptide complexes with TRPV1, the nature of the interactions, as well as functionally important structural elements involved in the complex formation, were established by molecular docking technique. The designed models allowed us to propose a hypothesis contributing to the understanding of how APHC1-APHC3 affect the pain signals transduction by TRPV1: apparently, relaxation time of the receptor increases due to binding of its two chains with a polypeptide molecule which disrupts functioning of TRPV1 and leads to partial inhibition of the signal transduction in electrophysiological experiments.  相似文献   

5.
This paper presents data on the activity of a new APHC2 polypeptide modulator of TRPV1 receptors, which was isolated from the sea anemone Heteractis crispa. It has been shown that APHC2 has an analgesic activity, does not impair normal motor activity, and does not change body temperature of experimental animals, which has a great practical value for design of potent analgesics of a new generation. Further study of the characteristics of binding of the polypeptide to the TRPV1 receptor may show approaches to the development of other antagonists of this receptor that do not influence the body temperature.  相似文献   

6.
The TRPV1 receptor plays a significant role in many biological processes, such as perception of external temperature (above 43°C), inflammation development, and thermoregulation. Activation of TRPV1 leads to the pain occurrence and decrease in the body temperature, while inhibition of this receptor can lead to an increase in the temperature. The TRPV1 peptide modulators from sea anemone Heteractis crispa extract (APHC1 and APHC3) have been previously characterized as molecules, which generated a pronounced analgesic effect and a decrease in the body temperature in experimental animals. Using the combined APHC1 and APHC3 amino acid sequences, we have prepared a hybrid peptide molecule named A13 that contains all residues potentially important for the activity of the peptide precursors. Biological tests on animals have shown that the hybrid molecule not only combines the analgesic properties of both peptides but, unlike the peptide precursors, also raises the body temperature of experimental animals.  相似文献   

7.
Accumulating evidence indicated that N-methyl-d-aspartate (NMDA) receptors are involved in the pathophysiology of depression and implicated in therapeutic targets. NMDA antagonists, such as ketamine, displayed fast-onset and long-lasting antidepressant activity in preclinical and clinical studies. Previous studies showed that Yueju pill exerts antidepressant effects similar to ketamine. Here, we focused on investigating the association of acute and lasting antidepressant responses of Yueju with time course changes of NMDA receptor subunits NR1, NR2A, and NR2B expressions in the hippocampus, a key region regulating depression response. As a result, Yueju reduced immobility time in the forced swimming test from 30 min to 5 days post a single administration. Yueju acutely decreased NR1 and NR2B protein expression in the hippocampus, with NR2A expression unaltered. NR1 expression remained down-regulated 5 days post Yueju administration, whereas NR2B returned to normal level in 24 h. Yueju and ketamine similarly ameliorated the depression-like symptoms at least for 72 h in learned helplessness test. They both reversed the up-regulated expression of NR1 in the learned helpless mice 1 or 3 days post administration. Different from ketamine, the antidepressant effects of Yueju were not influenced by blockade of amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor. These findings served as preclinical evidence that Yueju may confer acute and long-lasting antidepressant effects by favorably modulating NMDA function in the hippocampus.  相似文献   

8.
The effects of long-term treatment with imipramine or mirtazapine, two antidepressant drugs with different mechanisms of action, on the response of cortical dopaminergic neurons to foot-shock stress or to the anxiogenic drug FG7142 were evaluated in freely moving rats. As expected, foot shock induced a marked increase (+ 90%) in the extracellular concentration of dopamine in the prefrontal cortex of control rats. Chronic treatment with imipramine or mirtazapine inhibited or prevented, respectively, the effect of foot-shock stress on cortical dopamine output. Whereas acute administration of the anxiogenic drug FG7142 induced a significant increase (+ 60%) in cortical dopamine output in control rats, chronic treatment with imipramine or mirtazapine completely inhibited this effect. In contrast, the administration of a single dose of either antidepressant 40 min before foot shock, had no effect on the response of the cortical dopaminergic innervation to stress. These results show that long-term treatment with imipramine or mirtazapine inhibits the neurochemical changes elicited by stress or an anxiogenic drug with an efficacy similar to that of acute treatment with benzodiazepines. Given that episodes of anxiety or depression are often preceded by stressful events, modulation by antidepressants of the dopaminergic response to stress might be related to the anxiolytic and antidepressant effects of these drugs.  相似文献   

9.
A Pilc  K G Lloyd 《Life sciences》1984,35(21):2149-2154
Amitryptyline (10 mg/kg), desipramine (5 mg/kg), citalopram (10 mg/kg) and viloxazine (10 mg/kg) were administered to rats either acutely (decapitation 1 hr after i.p. injection) or subacutely (by subcutaneous minipump implantation for 18 days followed by decapitation 24 hr after removal). After acute administration there was not any consistent alteration in GABA levels, GAD activity, 3H GABA "A" or 3H-GABA "B" receptor binding or 3H-nipecotic acid binding to the recognition site for GABA uptake in the frontal cortex or hippocampus. Upon subacute antidepressant drug infusion, GABA levels, GAD activity and 3H-GABA-"A" binding showed only scattered differences in drug treated animals as compared to saline treated rats. However, 3H-GABA "B" binding in the frontal cortex was consistently elevated after all drug treatments (in % of control: amitryptyline = 155%; desipramine = 151%; citalopram = 173%; viloxazine = 189%). Scatchard analysis showed that this was due to a Bmax increase without an effect in Kd. These findings were reproduced by subacute administration of pargyline, a MAO inhibitor. These data suggest that GABA "B" receptors may be involved in the mechanism of action of antidepressant drugs and provide a link between GABAergic and monoaminergic hypotheses of depression.  相似文献   

10.
A mood stabilizing and antidepressant response to lithium is only found in a subgroup of patients with bipolar disorder and depression. Identifying strains of mice that manifest differential behavioral responses to lithium may assist in the identification of genomic and other biologic factors that play a role in lithium responsiveness. Mouse strains were tested in the forced swim test (FST), tail suspension test (TST) and open-field test after acute and chronic systemic and intracerebroventricular (ICV) lithium treatments. Serum and brain lithium levels were measured. Three (129S6/SvEvTac, C3H/HeNHsd and C57BL/6J) of the eight inbred strains tested, and one (CD-1) of the three outbred strains, showed an antidepressant-like response in the FST following acute systemic administration of lithium. The three responsive inbred strains, as well as the DBA/2J strain, displayed antidepressant-like responses to lithium in the FST after chronic administration of lithium. However, in the TST, acute lithium resulted in an antidepressant-like effect only in C3H/HeNHsd mice. Only C57BL/6J and DBA/2J showed an antidepressant-like response to lithium in the TST after chronic administration. ICV lithium administration resulted in a similar response profile in BALB/cJ (non-responsive) and C57BL/6J (responsive) strains. Serum and brain lithium concentrations showed that behavioral results were not because of differential pharmacokinetics of lithium in individual strains, suggesting that genetic factors likely regulate these behavioral responses to lithium. Our results indicate that antidepressant-like responses to lithium in tests of antidepressant efficacy varies among genetically diverse mouse strains. These results will assist in identifying genomic factors associated with lithium responsiveness and the mechanisms of lithium action.  相似文献   

11.
Serotonin (5-HT) and noradrenaline (NA) are involved in both pathogenesis and recovery from depression and anxiety. We examined the effects of acute and chronic treatment with milnacipran, a serotonin/noradrenaline reuptake inhibitors (SNRIs) antidepressant, on anxiety and memory retention in rats. Male Wistar rats received acute or chronic administration of milnacipran (12.5, 25 or 50 mg/kg) or saline (control group). The animals were separately submitted to elevated plus-maze, inhibitory avoidance and open-field tasks 1 h after injection, in the acute group, or 23 h after last injection, in the chronic group. Our results showed an anxiolytic-like effect after chronic administration of milnacipran at doses of 25 and 50 mg/kg. The treatment does not interfere in memory retention and habituation to a novel environment at any doses studied. These findings support that milnacipran, an established SNRIs antidepressant, can also be useful in the treatment of anxiety disorders.  相似文献   

12.
The therapeutic effect of a course of antidepressant treatment is believed to involve a cascade of neuroadaptive changes in gene expression leading to increased neural plasticity. Because glutamate is linked to mechanisms of neural plasticity, this transmitter may play a role in these changes. This study investigated the effect of antidepressant treatment on expression of the vesicular glutamate transporters, VGLUT1-3 in brain regions of the rat. Repeated treatment with fluoxetine, paroxetine or desipramine increased VGLUT1 mRNA abundance in frontal, orbital, cingulate and parietal cortices, and regions of the hippocampus. Immunoautoradiography analysis showed that repeated antidepressant drug treatment increased VGLUT1 protein expression. Repeated electroconvulsive shock (ECS) also increased VGLUT1 mRNA abundance in regions of the cortex and hippocampus compared to sham controls. The antidepressant drugs and ECS did not alter VGLUT1 mRNA abundance after acute administration, and no change was detected after repeated treatment with the antipsychotic agents, haloperidol and chlorpromazine. In contrast to VGLUT1, the different antidepressant treatments did not commonly increase the expression of VGLUT2 or VGLUT3 mRNA. These data suggest that a course of antidepressant drug or ECS treatment increases expression of VGLUT1, a key gene involved in the regulation of glutamate secretion.  相似文献   

13.
A substantial number of patients do not respond sufficiently to antidepressant drugs and are therefore often co-medicated with lithium as an augmentation strategy. Also inhibitors of nitric oxide synthase (NOS) have been used as an augmentation strategy, while inhibitors of NOS exhibit antidepressant-like properties in various animal models. Therefore, we hypothesized that modulation of NOS may be involved in the long-term effects of antidepressants and lithium, and studied the influence of acute and chronic administration of citalopram, alone or in combination with lithium, on NOS activity in hippocampus, cerebellum, and frontal cortex, by determination of L-citrulline being formed. We found that administration of acute or chronic citalopram (5 mg/kg and 20 mg/kg/24h, respectively) alone or in combination with subchronic lithium (60 mmol/kg chow pellet) did not influence the activity of NOS ex vivo in all regions compared to control. In contrast, high doses of lithium caused a significant decrease in NOS activity in vitro. We conclude that basal conditions are unsuitable for the study of antidepressant effects on NOS, and that the neurochemistry of nitric oxide remains unaltered following chronic citalopram or subchronic lithium under normal physiological conditions.  相似文献   

14.
The inflammatory hypothesis is one of the most important mechanisms of depression. Fucoidan is a bioactive sulfated polysaccharide abundant in brown seaweeds with anti-inflammatory activity. However, the antidepressant effects of fucoidan on chronic stress-induced depressive-like behaviors have not been well elucidated. Here, we used two different depressive-like mouse models, lipopolysaccharide (LPS) and chronic restraint stress (CRS) models, to explore the detailed molecular mechanism underlying its antidepressant-like effects in C57BL/6J mice by combining multiple behavioral, molecular and immunofluorescence experiments. Adenovirus-mediated overexpression of caspase-1 and pharmacological inhibitors were also used to clarify the antidepressant mechanisms of fucoidan. We found that acute administration of fucoidan did not produce antidepressant effects in the tail suspension test (TST) and forced swim test (FST). Interestingly, chronic fucoidan administration not only dose-dependently reduced stress-induced depressive-like behaviors in the TST, FST, sucrose preference test (SPT), and novelty-suppressed feeding test (NSFT), but also alleviated the downregulation of brain-derived neurotrophic factor (BDNF)-dependent synaptic plasticity via inhibiting caspase-1-mediated inflammation in the hippocampus of mice. Moreover, fucoidan significantly ameliorated behavioral and synaptic plasticity abnormalities in the overexpression of caspase-1 in the hippocampus of mice. Furthermore, blocking BDNF abolished the antidepressant-like effects of fucoidan in mice. Therefore, our findings clearly indicate that fucoidan provides a potential supplementary noninvasive treatment for depression by inhibition of hippocampal inflammation.  相似文献   

15.
Chronic but not acute administration (21 days) of desipramine (10 mg/kg), amitriptyline (10 mg/kg) or iprindole (5 mg/kg) enhanced the stimulatory effect of the α1-adrenergic agonist phenylephrine on the acoustic startle reflex when phenylephrine was infused into the subarachnoid space of the spinal cord. Comparable supersensitivity to phenylephrine also occurred 1 week after selective depletion of norepinephrine in the spinal cord via intrathecal administration of 6-hydroxydopamine. Behavioral supersensitivity to phenylephrine was associated with an increase in the number of 3H-prazosin binding sites following denervation but not following chronic antidepressant treatments. The results indicate that chronic antidepressant treatments may enhance functional α1-adrenergic transmission through mechanisms different than those following denervation.  相似文献   

16.
17.
The experiments on rats have shown that antidepressant concentrations that cause 50% inhibition of 14C-NA and 3H-HT uptake by brain slices remain unchanged following prolonged administration of antidepressants (imipramine, pirazidole, harmane and its derivatives--C-153, C-307, C-394, C-395), as compared to the control. Electrical stimulation of brain slices upon long-term treatment of rats with antidepressants and preincubation with 14C-NA and 3H-HT enhanced presynaptic release of radioactive mark at concentrations of antidepressants (EC2) 3-14 times lower than those in the control animals. Long-term antidepressant administration reduces the inhibitory influence of clonidine and HT on presynaptic release of 14C-NA and 3H-HT by brain slices. It is suggested that long-term administration of antidepressants decreases the sensitivity of terminal axons of NA- and HT-ergic neurons to autoinhibitory effect of neurotransmitter release.  相似文献   

18.
Abstract: We have previously demonstrated that chronic administration of antidepressants results in a reduction in the potency of glycine to displace 5,7-[3H]dichlorokynurenic acid (5,7-[3H]-DCKA) from the strychnine-insensitive glycine recognition site of the NMDA receptor complex. We now report that exposure of rats to the forced swim test results in a 56% increase in the potency of glycine to displace 5,7-[3H]DCKA from frontal cortical homogenates. These data are consistent with the hypothesis that the forced swim test, a preclinical screen sensitive to acute administration of antidepressant drugs and NMDA receptor antagonists, also results in adaptation of the NMDA receptor complex. Moreover, these data lend further support to the hypothesis that glutamatergic pathways are involved in the neurobiological response to stress and, potentially, in the pathophysiology of depression.  相似文献   

19.
Regular exercise has an antidepressant effect in human subjects. Studies using animals have suggested that the antidepressant effect of exercise is attributable to an increase of brain 5-hydroxytryptamine (5-HT); however, the precise mechanism underlying the antidepressant action via exercise is unclear. In contrast, the effect of 5-HT on antidepressant activity has not been clarified, in part because the therapeutic response to antidepressant drugs has a time lag in spite of the rapid increase of brain 5-HT upon administration of these drugs. This study was designed to investigate the contribution of brain 5-HT to the antidepressant effect of exercise. Mice were fed a tryptophan-deficient diet and stressed using chronic unpredictable stress (CUS) for 4 weeks with or without the performance of either moderate or intense exercise on a treadmill 3 days per week. The findings demonstrated that the onset of depression-like behavior is attributable not to chronic reduction of 5-HT but to chronic stress. Regular exercise, whether moderate or intense, prevents depression-like behavior with an improvement of adult hippocampal cell proliferation and survival and without the recovery of 5-HT. Concomitantly, the mice that exercised showed increased hippocampal noradrenaline. Regular exercise prevents the impairment of not long-term memory but short-term memory in a 5-HT-reduced state. Together, these findings suggest that: (1) chronic reduction of brain 5-HT may not contribute to the onset of depression-like behavior; (2) regular exercise, whether moderate or intense, prevents the onset of chronic stress-induced depression-like behavior independent of brain 5-HT and dependent on brain adrenaline; and (3) regular exercise prevents chronic tryptophan reduction-induced impairment of not long-term but short-term memory.  相似文献   

20.
The antinociceptive effect of acutely and chronically (every brain elimination half-life time) administered metapramine, a tricyclic antidepressant without anticholinergic or cardiotoxic effects, was studied in three different pain tests. In the hot plate test, its action was more potent when jumping was used as a pain parameter (acute ED50 = 19 +/- 3 mg/kg, i.p.) than when pain was assessed by licking of forepaws (only 20 mg/kg, i.p. was weakly active). Five chronic doses of 15 mg/kg were as active in the tail-flick test as an acute dose of 20 mg/kg (only active dose). Metapramine was more effective in the PBQ-induced writhing test after acute (ED50 = 9.9 +/- 0.1 mg/kg, i.p.) and chronic administration. A significant linear correlation was found between the effect in this test and plasma and overall brain levels of metapramine. No correlation was observed with levels of its three desmethylated metabolites. The usefullness of using a well-defined pattern of administration based on pharmacokinetic parameters and the involvement of monoaminergic mechanisms and of some metabolites of metapramine are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号