首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemoglobin A, cross-linked between Lys 99 alpha 1 and Lys 99 alpha 2, was used to obtain a partially oxidized tetramer in which only one of the four hemes remains reduced. Because of the absence of dimerization, asymmetric, partially oxidized derivatives are stable. This is evidenced by the fact that eight of the ten possible oxidation states could be resolved by analytical isoelectric focusing. A triply oxidized hemoglobin population HbXL+3 was isolated whose predominant component was (alpha + alpha +, beta + beta 0). This triferric preparation was examined as a possible model for the triliganded state of ferrous HbA. The aquomet and cyanomet derivatives were characterized by their CD spectra and their kinetic reactions with carbon monoxide. CD spectra in the region of 287 nm showed no apparent change in quaternary structure upon binding ligand to the fourth, ferrous heme. The spectra of the oxy and deoxy forms of the cyanomet and aquomet derivatives of HbXL+3 differed insignificantly and were characteristic of the normal liganded state. Upon addition of inositol hexaphosphate (IHP), both the oxy and deoxy derivatives of the high-spin triaquomet species converted to the native deoxy conformation. In contrast, IHP had no such effect on the conformation of the low-spin cyanomet derivatives of HbXL+3. The kinetics of CO combination as measured by stopped-flow and flash photolysis techniques present a more complex picture. In the presence of IHP the triaquomet derivative does bind CO with rate constants indicative of the T state whether these are measured by the stopped-flow technique or by flash photolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Studies of high spin ferrous and ferric derivatives led us to conclude that in the quaternary R structure the state of the hemes is similar to that in the free alpha and beta subunits, but in the T structure a tension acts on the hemes which tries to pull the iron and the proximal histidine further from the plane of the porphyrin. We have now studied the effect of inositol hexaphosphate (IHP) on the three low spin ferrous compounds of hemoglobin with O2, CO, and NO. IHP failed to switch the quaternary structure of carbonmonoxy- and oxyhemoglobin A to the T state, but merely caused a transition to an as yet undefined modification of the R structure. IHP is known to cause a switch to the T structure in hemoglobin Kansas. We have found that this switch induces red shifts of the visible alpha and beta absorption bands and the appearance of a shoulder on the red side of the alpha band; these changes are very weak in carbonmonoxy- and slightly stronger in oxyhemoglobin Kansas. As already noted by previous authors, addition of IHP to nitrosylhemoglobin A induces all the changes in uv absorption and CD spectra, sulfhydryl reactivities, and exchangeable proton resonances normally associated with the R leads to T transition, and is accompanied by large changes in the Soret and visible absorption bands. Experiments with nitrosyl hybrids show that these changes in absorption are caused predominantly by the hemes in the alpha subunits. In the accompanying paper Maxwell and Caughey (J. C. Maxwell and W. S. Caughey (1976), Biochemistry, following paper in this issue) report that the NO in nitrosylhemoglobin without IHP gives a single ir stretching frequency characteristic for six-coordinated nitrosyl hemes; addition of IHP causes the appearance of a second ir band, of intensity equal to that of the first, which is characteristic for five-coordinated nitrosyl hemes. Taken together, these results show that the R leads to T transition causes either a rupture or at least a very dramatic stretching of the bond from the iron to the heme-linked histidine, such that an equilibrium is set up between five- and six-coordinated hemes, biased toward five-coordinated hemes in the alpha and six-coordinated ones in the beta subunits. The reason why IHP can switch nitrosyl-, but not carbonmonoxy- or oxyhemoglobin A, from the R to the T structure is to be found in the weakening of the iron-histidine bond by the unpaired NO electron and by the very short Fe-NO bond length.  相似文献   

3.
Interactions of stromelysin with a series of inhibitors representative of three chemical templates with distinct binding modes were examined. Unfolding temperatures for inhibitor complexes were 10 degrees C to 15 degrees C greater than for apo stromelysin. Minor changes in ellipticity in the far-UV CD spectra of complexes indicated that ligand-induced conformational changes were localized to the binding site and did not involve gross changes in protein folding. Isothermal titrating calorimetry of thiadiazole-containing inhibitors, which bind in the S(1)-S(3) subsites of stromelysin, indicated that the binding interaction was exothermic and only slightly favorable entropically. Near-UV CD spectra showed large positive ellipticity increases from 250 to 300 nm, consistent with an interaction between the benzene ring of the inhibitor and stromelysin residues Tyr155 and Tyr168. Interactions between stromelysin and amide-hydroxamate ligands, which bind in the S(')(1)-S(')(3) subsites, were found to be both enthalpically and entropically driven. Binding of this class of ligands resulted in modest negative ellipticity changes at 260-285 nm and positive increases at 292 nm. Stromelysin complexed to a lactam-hydroxamate inhibitor with structure extending into both the S(1)-S(3) and S(')(1)-S(')(3) subsites showed increased ellipticity at 245 nm and negative changes at 260-285 and 295 nm.  相似文献   

4.
G C Chen  J P Kane 《Biochemistry》1975,14(15):3357-3362
Low density lipoprotein (LDL) (1.024-1.045 G/cm3) was prepared by ultracentrifugal flotation from serum of normal fasting subjects. Circular dichroism (CD) and optical rotatory dispersion (ORD) spectra in the ultraviolet region were measured at 2, 25, and 37 degrees on LDL, lipid extracted from LDL, and on pure component lipids. All exhibit reversible, temperature-dependent optical activities. Sphingomyelin has a strong negative CD band around 195 nm. Cholesterol and cholesteryl esters have a CD minimum at 208 nm. They have positive CD bands around 201 and 198 nm which decrease sharply and become negative at 198 and 193 nm, respectively. The CD of the total lipid extract of LDL is negative and drops monotonically below 200 nm. Thus, the lipid moiety could account for the increasing negativity of the CD of LDL below 195 nm. After subtraction of the ellipticity corresponding to amounts of lipids in organic solvents equivalent to those found in LDL, the 208-210 nm trough of LDL diminishes markedly. This is accompanied by a blue-shift of the extrema from 195-196 to 193 nm and an increase in the magnitude of the positive ellipticity. The fractions of helix and of beta form in the protein, determined by the method of Y. H. Chen, J. T. Yang, and K. H. Chau ((1974), Biochemistry 13, 3350), in the wavelength interval of 250-240 nm, remain essentially unchanged between 2 and 37 degrees. These observations suggest that a substantial part of the thermal change in the CD spectrum of LDL between 208 and 210 nm may be attributable to lipids.  相似文献   

5.
The thermal denaturation of beta-lactoglobulin in aqueous solutions at pH 5.5 and 2.0 was investigated by differential scanning calorimetry (DSC) and circular dichroic (CD) measurements. By calorimetry, the denaturation temperatures (Td), denaturation enthalpies, and specific heat capacity changes for thermal denaturation in the temperature range scanned, i.e., 20-100 degrees C. The unfolding process was found to be only partially reversible. Analysis of the far-ultraviolet CD spectra reveals that with increasing temperature the mean residue ellipticity [( theta]) becomes less negative, which reflects unfolding of the native protein. At the highest temperature of CD measurements, i.e., 80 degrees C, conformational changes are to a large extent reversible.  相似文献   

6.
The Bohr effect of hemoglobin and that of the aquomet and cyanomet valency hybrids was measured in the presence and the absence of IHP (inositol hexaphosphate) and DPG (2,3-diphosphoglycerate). In the absence of these organic phosphates the four hybrids show similar, but suppressed Bohr effects as compared to hemoglobin. Addition of IHP and DPG results in all cases in an increase of the Bohr effect. The additional phosphate induced Bohr effect of the hybrids with the alpha chain in the oxidized form is almost identical to that of hemoglobin, while this effect of the hybrids with oxidized beta chains is slighly lower than that of hemoglobin. The results suggest (a) that the Bohr effect is correlated to the ligation state of the hemoglobin molecule rather than to its quaternary structure (b) that the additional phosphate induced Bohr effect is related to the change in quaternary structure of the tetramer, and (c) that with respect to the Bohr effect of the hybrids there is no difference between high and low spin species.  相似文献   

7.
The properties of human methemoglobin have been investigated under a wide variety of conditions to determine its conformation and to test for evidence of the T state conformation which has been proposed by Perutz to exist in the presence of high spin ligands and inositol hexaphosphate (IHP). Subunit dissociation was measured as a criterion for the T state since marked differences in the tetramer-dimer equilibrium exist for oxyhemoglobin (R state) and deoxyhemoglobin (T state). In the absence of IHP, complexes of methemoglobin with both high spin ligands (water, fluoride) or low spin ligands (azide, cyanide) show extensive dissociation in 2,2-bis(hydroxymethyl)-2,2',2"-nitriloethanol buffers, pH 6, 0.1 M NaCl, with values of the tetramer-dimer dissociation constant (K4,2) near 10-5 M. The addition of IHP lowers K4,2 to a value near 10-5 M for all forms of methemoglobin. Combination of IHP with methemoglobin promotes a conformational change, but the change is apparently independence of spin state. The conformation acquired in the presence of IHP is not identical with the T state (K4,2 similar to 10-12 M) and can also occur with hemoglobin in the ferrous form, as revealed by a substantial reduction in K4,2 for CO-hemoglobin upon addition of IHP. Subunit dissociation has also been measured using the haptoglobin reaction, since haptoglobin binds only to hemoglobin dimers. The haptoglobin experiments give results that are qualitatively in agreement with the conclusions reached by ultracentrifuge measurements. Similar results are also obtained by estimating the degree of dissociation on the basis of the material which aggregates following mixing with dithionite. The effect of IHP on azide-binding kinetics with methemoglobin has also been examined. Changes in reactivity is observed upon addition of IHP, but the principal effect is observed upon addition of IHP, but the principal effect is an enhancement of the rate of reaction of the beta chains. Changes in the reactivity of the beta93 sulfhydryl group of methemoglobin also accompany addition of IHP, but in a manner which is largely independent of the spin state of the iron. Similar changes are again found with CO-hemoglobin upon addition of IHP. The rate of binding of bromthymol blue also shows some changes upon addition of IHP, but the changes are more pronounced for deoxyhemoglobin than for methemoglobin. Since the results obtained did not appear to indicate a significant role for spin state in the changes observed, additional studies were undertaken using EPR spectroscopy.  相似文献   

8.
Magnetic circular dichroism (MCD) spectroscopy has been used to explore the connection between optical spectra and the high spin population of several hemoglobins under various conditions. It is found that the effectiveness of IHP in inducing spectral changes can be markedly affected by solvent. For example, the IHP-induced spectral changes in the visible region for nitritomethemoglobin-A in mixed buffer solvent systems (glycerol or polyethylene glycol (PEG), mw 190–210) are more than double those observed in aqueous buffers. We estimate that IHP induces a mix of R/T forms in bis-tris phosphate buffers, for NO2?metHb that is only about 50% T form. While PEG and glycerol both lead to enhanced IHP-induced spectral differences, they behave differently in two aspects. PEG shifts the visible MCD and absorption spectra of F?metHb-A. supposedly already biased towards the T form by ligand, in the same direction that IHP does. PEG also maximizes the spin state changes with IHP for three R form hemoglobins and N3?metHb-A, and so appears to stabilize the T form in all cases. Glycerol does not. In addition, the apparent binding constant for NO2? to H2OmetHb-A differs between these two solvents. Comparison of the data from several hemoglobins leads to the conclusion that the changes in spin state distributions induced by IHP correlate well with quarternary structure for a given hemoglobin. An analogous correlation amongst various proteins between initial spin state distribution (IHP) absent) and quarternary structure is not found.  相似文献   

9.
Zinc insulin hexamer has been shown to undergo a phenol-induced T6 to R6 conformational transition in solution. Our circular dichroic (CD) studies demonstrate that insulin undergoes pH-dependent conformational changes over the pH range of 6-10 in the T-state and in the R- state. In order to determine which specific amino acid residues may be responsible for these pH-dependent changes, a series of insulin analogs were utilized. In the T-state, the pH dependent CD changes monitored in the far UV region have a pK of 8.2 and appear to be related to the titration of the A1-Gly amino group. Using the near UV CD a second pH-dependent conformational change was detected with a pK of 7.5 in the T-state. 1H N.M.R. studies suggest that B5-His may be responsible for this conformational transition. In the presence of m-cresol (R-state), the pK value was found to be 6.9. During this titration, the increased ellipticity for the R-state is diminishing as pH decreases from pH 8 to 6, and no difference in ellipticity was observed at 255 nm between T- and R-states at pH 6. Therefore, this may be due to the transition from the R back to the T-state.  相似文献   

10.
Liver microsomes from control, 3-methylcholanthrene-treated, and phenobarbital-treated New Zealand White rabbits were examined for differences detectable by circular dichroism (CD) spectroscopy. Addition of the Type I substrate cyclohexane to phenobarbital microsomes decreases the negative ellipticity at about 418 nm and concomitantly increases the negative ellipticity at about 395 nm. Cyclohexane added to microsomes from control or 3-methylcholanthrene-treated animals shows little or no CD changes in these wavelength regions. The effect by cyclohexane is completely reversed by the subsequent addition of butanol-1. Addition of benzo[a]pyrene to phenobarbital microsomes also decreases the negative ellipticity at about 418 nm, and this effect can be completely reversed with the subsequent addition of butanol-1. The ellipticity at about 395 nm is reversed in sign and is markedly increased by benzo[a]pyrene, however, and this effect is not changed with the subsequent addition of butanol-1. Restoring the cyclohexane- or benzo[a]pyrene-induced changes by the subsequent addition of alcohol is proportional to the aliphatic chain length, with 4 or more carbon atoms being maximally effective. Primary alcohols inhibit aryl hydrocarbon (benzo[a]pyrene) hydroxylase (EC 1.14.14.2) activity of phenobarbital microsomes, and the inhibitory effect is enhanced with increasing chain length of the alcohols; 4 or more carbon atoms being maximally effective. Stimulation of monooxygenase metabolism of cyclohexane or benzo[a]pyrene by NADPH results in restoration of the negative ellipticity band at about 418 nm, whereas the ellipticity peak at about 395 nm remains unchanged. More negative ellipticity at about 210 and 222 nm is found in phenobarbital microsomes than in control or 3-methylcholanthrene microsomes and cyclohexane addition in vitro increases these negative ellipticity peaks in phenobarbital microsomes but not in control or 3-methylcholanthrene microsomes.These results show that with CD studies one can detect directly both high spin (negative ellipticity peak at 385–395 nm) and low spin (negative ellipticity peak at about 418 nm) P-450 iron in liver microsomes from control, 3-methylcholanthrene-treated, or phenobarbital-treated rabbits. These data are consistent with a weak ligand such as oxygen, rather than a stronger ligand such as nitrogen, in the sixth position of 6-coordinated (low spin) ferric iron in P-450 in vivo. Type I substrates such as cyclohexane or benzo[a]pyrene, when bound to P-450, change low spin P-450 iron to the high spin state. Cyclohexane-bound high spin P-450 iron in vitro is more easily converted to low spin iron by butanol-1 than is benzo[a]pyrene-bound high spin P-450 iron. Liver microsomal proteins from phenobarbital-treated rabbits have a higher helical content than those from either control or 3-methylcholanthrene-treated rabbits. Cyclohexane addition in vitro increases this helical character only in phenobarbital microsomes, indicating that one or more forms of phenobarbital-induced P-450 apoproteins is (are) more specific for cyclohexane binding and metabolism than control or 3-methylcholanthrene-induced forms of P-450.  相似文献   

11.
Symmetrical FeZn hybrids of human HbA have been used to measure K(1)(alpha) and K(1)(beta), the dissociation constants for the binding of a single molecule of oxygen to unliganded HbA at an alpha subunit and at a beta subunit, respectively. The kinetic constants, l(1)'(alpha) and l(1)'(beta), for the combination of the first CO molecule to unliganded HbA at an alpha or a beta subunit, respectively, were also measured. Measurements were carried out between pH 6 and pH 8 in the presence and absence of inositol hexaphosphate (IHP). Both equilibrium constants exhibit a significant Bohr effect in the absence of IHP. The addition of IHP to a concentration of 0.1 mM increases both dissociation constants in a pH-dependent manner with the result that both Bohr effects are greatly reduced. These results require a negative thermodynamic linkage between the binding of a single oxygen at either an alpha or a beta subunit and the binding of IHP to the T quaternary structure of HbA. Although the beta hemes are relatively near the IHP binding site, a linkage between that site and the alpha hemes, such that the binding of a single oxygen molecule to the heme of one alpha subunit reduces the affinity of the T state for IHP, requires communication across the molecule. l(1)'(alpha) exhibits a very slight pH dependence, with a maximum variation of 20%, while l(1)'(beta) varies with pH three times as much. IHP has no effect on the pH dependence of either rate constant but reduces l(1)'(alpha) marginally, 20%, and l(1)'(beta) by 2-fold at all pH values.  相似文献   

12.
Precise oxygen equilibrium curves of human adult hemoglobin were determined by the automatic recording method at several temperatures in the presence and absence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP) with 0.05 M 2,2-bis(hydroxymethyl)-2,2',2'-nitrolotriethanol (bis-tris) buffers (pH 7.4) containing 0.1 M Cl-. The equilibrium data were analyzed according to the Adair scheme, and the heats, deltaHi (i = 1,2,3,4) and the entropy changes, deltaSi (i = 1,2,3,4), for the individual oxygenation steps were obtained. The shape of the equilibrium curve varies on temperature changes whether DPG or IHP is present or absent. In consequence, the deltaHi value depends on i and on the presence of DPG and IHP. Behavior of deltaSi is similar to that of deltaHi. The similar behavior of deltaHi and deltaSi resulted in a compensation phenomenon. The contribution of T cdeltaSi to the free energy change is compensated by the contribution of deltaHi at the first three oxygenation steps but not at the fourth step, and for i = 1,2, and 3 changes of T cdeltaSi value upon the addition of DPG and IHP are compensated by accompanied changes of deltaHi value, where T c (= 260 K) is the compensation temperature. A major part of both the enthalpy-entropy compensation and nonuniformity of deltaHi and deltaSi appears to be attributable to contributions of the oxygen-linked binding of Cl-, DPG and IHP, by hemoglobin. The present results do not necessarily support the earlier idea of Wyman that the cooperative oxygenbinding is essentially an entropy effect.  相似文献   

13.
Circular dichroism and spin-label studies of carp hemoglobin   总被引:1,自引:0,他引:1  
Circular dichroism (c.d.) spectra were obtained for deoxy, oxy, carboxy, nitrosyl, aquomet and azidomet derivatives of carp hemoglobin. The spectra of the hemolysate and its two major components are virtually identical. Binding of diatomic ligands induces large changes in the 287 nm ellipticity. In the case of oxygen binding this change appears to be proportional to the free energy of co-operation. The changes of L-band ellipticity and Soret rotational strength with ligation reflect tertiary structural alterations and bear no relationship to quaternary transitions. The c.d. results indicate that carp deoxyhemoglobin has very similar tertiary and quaternary structures between pH 6·4 and 8·0, whereas the oxyhemoglobin undergoes continuous conformational adjustment in response to pH changes. The effect of inositol hexaphosphate on c.d. spectra is much smaller than it is on the functional properties. Electron paramagnetic resonance spectra of iodoacetamide nitroxide label are sensitive to ligation, the label is probably attached to Cys142β.  相似文献   

14.
Jin Y  Sakurai H  Nagai Y  Nagai M 《Biopolymers》2004,74(1-2):60-63
The deoxy-form of human adult hemoglobin (Hb A) exhibits a distinct negative CD band at 287 nm that disappears in the oxy-form. It has been suggested that the negative CD band is due to the environmental alteration of Tyr-alpha 42 or Trp-beta 37 at the alpha(1)beta(2) contact upon deoxygenation. To evaluate the contributions of the aromatic residues at the alpha(1)beta(2) contact and the penultimate tyrosine residues of the alpha and beta subunits (alpha 140 and beta 145) to the negative CD band, three recombinant (r) Hbs (rHb Ser-alpha 42, rHb His-beta 37, and rHb Thr-beta 145) were produced in Escherichia coli, and we compared the near-uv CD spectra of these three rHbs and Hb Rouen (Tyr-alpha 140-->His) with the spectra of Hb A under the condition in which all mutant Hbs were able to undergo the T-->R transition (Hill's n > 2.0). The contributions of Tyr-alpha 42, Trp-beta 37, Tyr-alpha 140, and Tyr-beta 145 to the negative CD band were estimated from changes in the ellipticity of the negative CD band at 287 nm to be 4, 18, 32, and 27%, respectively. These results indicate that environmental alteration of the penultimate tyrosine residues caused by the formation of salt bridges upon the R-->T transition is primarily responsible for the negative CD band.  相似文献   

15.
The properties of three HbA variants with different mutations at the beta102 position, betaN102Q, betaN102T, and betaN102A, have been examined. All three are inhibited in their ligand-linked transition from the low affinity T quaternary state to the high affinity Re quaternary state. In the presence of inositol hexaphosphate, IHP, none of them exhibits cooperativity in the binding of oxygen. This is consistent with the destabilization of the Re state as a result of the disruption of the hydrogen bond that normally forms between the beta102 asparagine residue and the alpha94 aspartate residue in the Re state. However, these three substitutions also alter the properties of the T state of the hemoglobin tetramer. In the presence of IHP, the first two substitutions result in large increases in the ligand affinities of the beta-subunits within the T state structure. The betaN102A variant, however, greatly reduces the pH dependencies of the affinities of the alpha and beta subunits, K1(alpha) and K1(beta), respectively, for the binding of the first oxygen molecule in the absence of IHP. In the presence of IHP, the T state of this variant is strikingly similar to that of HbA under the same conditions. For both hemoglobins, K1(alpha) and K1(beta) exhibit only small Bohr effects. In the absence of IHP, the affinities of the alpha and beta subunits of HbA for the first oxygen are increased, and both exhibit greatly increased Bohr effects. However, in contrast to the behavior of HbA, the ligand-binding properties of the T state tetramer of the betaN102A variant are little affected by the addition or removal of IHP. It appears that along with its effect on the stability of the liganded Re state, this mutation has an effect on the T state that mimics the effect of adding IHP to HbA. It inhibits the set of conformational changes, which are coupled to the K1 Bohr effects and normally accompany the binding of the first ligand to the HbA tetramer in the absence of organic phosphates.  相似文献   

16.
Lee LV  Poyner RR  Vu MV  Cleland WW 《Biochemistry》2000,39(16):4821-4830
H97N, H95N, and Y229F mutants of L-ribulose-5-phosphate 4-epimerase had 10, 1, and 0.1%, respectively, of the activity of the wild-type (WT) enzyme when activated by Zn(2+), the physiological activator. Co(2+) and Mn(2+) replaced Zn(2+) in Y229F and WT enzymes, although less effectively with the His mutants, while Mg(2+) was a poorly bound, weak activator. None of the other eight tyrosines mutated to phenylalanine caused a major loss of activity. The near-UV CD spectra of all enzymes were nearly identical in the absence of metal ions and substrate, and addition of substrate without metal ion showed no effect. When both substrate and Zn(2+) were present, however, the positive band at 266 nm increased while the negative one at 290 nm decreased in ellipticity. The changes for the WT and Y229F enzymes were greater than for the two His mutants. With Co(2+) as the metal ion, the CD and absorption spectra in the visible region were different, showing little ellipticity in the absence of substrate and a weak absorption band at 508 nm. With substrate present, however, an intense absorption band at 555 nm (epsilon = 150-175) with a negative molar ellipticity approaching 2000 deg cm(2) dmol(-1) appears with WT and Y229F enzymes. With the His mutants, the changes induced by substrate were smaller, with negative ellipticity only half as great. The WT, Y229F, H95N, and H97N enzymes all catalyze a slow aldol condensation of dihydroxyacetone and glycolaldehyde phosphate with an initial k(cat) of 1.6 x 10(-3) s(-1). The initial rate slowed most rapidly with WT and H97N enzymes, which have the highest affinity for the ketopentose phosphates formed in the condensation. The EPR spectrum of enzyme with Mn(2+) exhibited a drastic decrease upon substrate addition, and by using H(2)(17)O, it was determined that there were three waters in the coordination sphere of Mn(2+) in the absence of substrate. These data suggest that (1) the substrate coordinates to the enzyme-bound metal ion, (2) His95 and His97 are likely metal ion ligands, and (3) Tyr229 is not a metal ion ligand, but may play another role in catalysis, possibly as an acid-base catalyst.  相似文献   

17.
Chitosan interaction with soybean beta-conglycinin beta(3) was investigated by thermal unfolding experiments using CD spectroscopy. The negative ellipticity of the protein was enhanced with rising solution temperature. The transition temperature of thermal unfolding of the protein (T(m)) was 63.4 degrees C at pH 3.0 (0.15 M KCl). When chitosan was added to the protein solution, the T(m) value was elevated by 7.7 degrees C, whereas the T(m) elevation upon addition of chitosan hexamer (GlcN)(6) was 2.2 degrees C. These carbohydrates appear to interact with the protein stabilizing the protein structure, and the interaction ability could be evaluated from the T(m) elevation. Similar experiments were conducted at various pHs from 2.0 to 3.5, and the T(m) elevation was found to be enhanced in the higher pH region. We conclude that chitosan interacts with beta-conglycinin through electrostatic interactions between the positive charges of the chitosan polysaccharide and the negative charges of the protein surface.  相似文献   

18.
M B Senior  D E Olins 《Biochemistry》1975,14(15):3332-3337
Formaldehyde (HCHO) fixation of chicken erythrocyte chromatin produces a marked decrease in its positive circular dichroism (CD), above 260 nm, and the appearance of s small negative ellipticity around 295 nm. The ultraviolet spectrum of chromatin is unaffected, nor does HCHO produce any changes in the uv or CD spectra of chicken erythrocyte DNA. The extent of the circular dichroism transition from the native chromatin to the suppressed spectrum is dependent on the concentration of HCHO and salt concentration. The kinetics of the reactions are complex, implicating at least two reactive species. Studies of the reaction of HCHO with chromatin in ethylene glycol and CD measurements of aqueous chromatin solution with added glutaraldehyde preclude simple dehydration and general cross-linking effects as causes of the CD changes observed. The results are interpreted as indicating a conformational change of the DNA in chromatin caused by histone-DNA or histone-histone cross-linking.  相似文献   

19.
The effect of kallikrein and factor XIa proteolysis of high molecular weight kininogen (HK) was investigated. Circular dichroism (CD) spectroscopy showed that cleavage of HK by plasma kallikrein or urinary kallikrein, both of which result in an active cofactor (HKa), results in conformational change that is characterized by increase in CD ellipticity at 222 nm. This suggests an increase in organized secondary structures. By contrast, cleavage of HK by factor XIa which results in an inactive cofactor (HKi) is characterized by a dramatic decrease in CD ellipticity at 222 nm suggesting an entirely different type of conformational change. The intrinsic fluorescence of HK is enhanced after cleavage by all three proteases. These conformational changes may play a role in determining the structure and function of HKa and HKi.  相似文献   

20.
The backbone resonance assignments have been completed for the apo (1H and 15N) and calcium-loaded (1H, 15N, and 13C) regulatory N-domain of chicken skeletal troponin-C (1-90), using multidimensional homonuclear and heteronuclear NMR spectroscopy. The chemical-shift information, along with detailed NOE analysis and 3JHNH alpha coupling constants, permitted the determination and quantification of the Ca(2+)-induced secondary structural change in the N-domain of TnC. For both structures, 5 helices and 2 short beta-strands were found, as was observed in the apo N-domain of the crystal structure of whole TnC (Herzberg O, James MNG, 1988, J Mol Biol 203:761-779). The NMR solution structure of the apo form is indistinguishable from the crystal structure, whereas some structural differences are evident when comparing the 2Ca2+ state solution structure with the apo one. The major conformational change observed is the straightening of helix-B upon Ca2+ binding. The possible importance and role of this conformational change is explored. Previous CD studies on the regulatory domain of TnC showed a significant Ca(2+)-induced increase in negative ellipticity, suggesting a significant increase in helical content upon Ca2+ binding. The present study shows that there is virtually no change in alpha-helical content associated with the transition from apo to the 2Ca2+ state of the N-domain of TnC. Therefore, the Ca(2+)-induced increase in ellipticity observed by CD does not relate to a change in helical content, but more likely to changes in spatial orientation of helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号