首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
聚乙二醇修饰对酶活性和稳定性的影响   总被引:2,自引:0,他引:2  
经氰尿酰氯和对硝基苯碳酸酯活化过的甲氧基聚乙二醇分别用来对枯草杆菌蛋白酶进行化学修饰.修饰后的酶在水溶液和有机溶剂中均保持活性.酶在水溶液里的kcat增加,Km不变.酶对温度和pH的稳定性都显著升高,但最佳反应温度不变.  相似文献   

2.
P2-DNA即Phage 2型噬菌体的染色体DNA,是一条线状双股螺旋的DNA分子,分子量为2.2×107Da。有19个碱基的牯性末端.可以连接成环状[1].1970年Bertani L.E. 和 Bertani G分离纯化得到P2噬苗体并对其遗传学及理化特性进行了研究[2],发现它在DNA复制,溶源性的控制以及基因重组等方面与温和性λ菌体不同;1979年Saint R B 等和Westoo A等先后研究了P2-DNA的几种限制酶的切割图谱[3]。P2-DNA可望成为分子生物学研究的重要工具和实验材料。目前国内尚无这种材料.我们试图将少量的P2-DNA转染获得P2噬菌体,加以扩增纯化.抽提得到大量的P2-DNA。为分子克隆和限制酶的研究提供有实用价值的材料和研究工具。  相似文献   

3.
用化学方法合成编码 2个大肠杆菌tRNALeu(tRNALeu1和tRNALeu2 )的基因和T7启动子 ,分别克隆到pUC1 9载体上 ,并在纯化的T7RNA聚合酶的体外转录系统中转录出不含修饰核苷酸的tRNALeu.在T7转录体系中 ,亚精胺对转录有负影响 .在最适转录条件下 ,可以得到有活力的RNA转录物的量是模板DNA的 2 5 0倍左右 .在大肠杆菌亮氨酰 tRNA合成酶的催化下 ,2种经体外转录产生的未修饰等受体tRNALeu(tRNALeu1和tRNALeu2 )的亮氨酸接受能力基本相同 ,但只有从体内纯化对应的tRNALeu的四分之一左右 ,表明修饰核苷酸在tRNALeu氨酰化过程中起着较为重要但非关键的作用 .  相似文献   

4.
超氧化物歧化酶化学修饰的初步研究   总被引:9,自引:1,他引:8  
本文以三聚氰氯为活化剂,采用聚乙二醇法对超氧化物歧化酶进行化学修饰,得到了均一的聚乙二醇-SOD加合物。修饰酶活力为天然酶的75%,表明酶活性中心结构基本保持。 对修饰酶残留氨基的测定表明,近80%可滴定氨基参加了反应,且SOD骨架结构在修饰前后变化不大,可以推测聚乙二醇是连结在蛋白质表面上的。  相似文献   

5.
高温放线菌V4菌株(Thermoactinomyces sp.V4)产生的β-淀粉酶最适反应温度为70℃,最适pH为6,酶的热稳定性良好,50℃(4h)不失去酶活力,55℃(2h)保持最初活力的92%,酶对可溶性淀粉的水解率达77%,纸层析结果显示水解产物主要为麦芽糖,经旋光测定,水解产物具有β-构型。巯基抑制剂对此β-淀粉酶无抑制作用。V4菌株同时产生异淀粉酶及少量的-菌一淀粉酶。  相似文献   

6.
本文报道产蛋白酶菌株枯草杆菌N1025的产酶条件及酶性质的初步考察。在45℃培养,最适产酶时间为20小时,培养基以自然pH为好,CaCl2、MgSO4、FeCl3及CaCO3有促进产酶作用,尿素、(NH4)2SO4及NaNO3对产酶有明显的抑制作用。以酪蛋白为底物,在45℃时,pH7—8酶活性较高;在52—55℃,出现pH 7及9两  相似文献   

7.
本文报道分别用聚乙二醇(PEG)/磷酸盐和PEG/(NH·)2SO4双水相体系从枯草轩菌发酵液中提取a-淀粉酶。研究了PEG的平均分子量、PEG浓度,成相的盐的浓度和Nacl的浓度对a-淀粉酶和蛋白质的分配系数以及相比的影响,确定了最佳的操作条件。实验表明在180%PEG 1500/10%磷酸盐/0.05M NaCl的体系中,a-淀粉酶的分配系数为6.62,蛋白质分配系数为1.14,相比为2.5,a-淀粉酶总收率为94.3%,在16%PEG 1500/12%(NH4)2SO4/O.05M NaCl体系中,a-淀粉酶分配系数为82,蛋白质分配系数为5.2,相比为O.92,酶收率为99%,结果表明用PEG/无机盐双水相体系直接从含有菌体的发酵液中提取a-淀粉酶是可行的。  相似文献   

8.
白腐菌Phanerochaeta chrysosporium MIG. 383降解桉木时具有显著的选择性,30天内降解37.23%Klason木素,7.29%综纤维素。该菌株产胞外锰过氧化物酶,并在高碳低氧培养基中显示较高酶活。静置液体培养的优化培养条件是(L-1):10g葡萄糖,2mmol酒石酸铵,10mmol pH4.5醋酸钠缓冲液,1g吐温80,2gK2PO4,0.5g MgSO4·7H2O,0.1g CaCl2·2H2O,lmg VB1,70ml微量元素混合液:最适产酶温度是37℃。上述条件下,该菌接种后静置培养4天,产锰过氧化物酶活达1840U/L,酶作用最适温度是37℃,最适DH是3.5。  相似文献   

9.
酵母tRNAAla的3′半分子与一个11聚的DNA片段(5′GGAATCGAACC3′)杂交后用RNase H酶解,该酶能在Ψ55的3′侧定点剪切,这样就制备得片段C3655该片段经1~2个高碘酸氧化和β-消去得片段C36-T54和C36-G53机器合成了3个酵母tRNAAla的片段,分别j是片段C56-A76,U55-A76(以U替代Ψ55)和U54-A76(以UU替代T54Ψ55).合成和制备的片段以适当的组合用T4RNA连接酶连接,产物是酵母tRNAtRNAAla的3′半分子或其类似物.3种3′半分子或其类似物分别与天然5′半分子连接得重组天然酵母tRNAAla(tRNAr)和2个酵母tRNAAla的类似物:(1)tRNAa(以U替代Ψ55),(2)tRNAb(以UU替代T54Ψ55).体外测定了它们的丙氨酸接受活力和参入活力,发现酵母tRNAAla的类似物tRNAa和tRNAb与天然重组酵母tRNAAla相比,它们的氨基酸接受活力分别降低了25%和55%,参入活力分别降低了35%和30%.说明酵母tRNAAla中的修饰核苷酸T54和Ψ55对该tRNA的功能有重要的影响.  相似文献   

10.
有机相酶促酯化反应中水分调控技术的研究   总被引:2,自引:0,他引:2  
在有机相酶促反应中,水含量是影响酶活力的关键因素.对异辛烷/正辛醇体系中柱状假丝酵母脂肪酶催化萘普森酯化反应中的水分调控技术进行了研究. 结果表明:水合盐对——Na2SO4·10H2O/Na2SO4对系统水分的变化具有有效的缓冲作用;非极性硅藻土吸附固定酶,使之对水分的敏感性得到缓解;另外,加入分子筛去除副产物——“水”可促进酯化过程的进行.  相似文献   

11.
Caspase 8 plays a dual role in the survival of T lymphocytes. Although active caspase 8 mediates apoptosis upon death receptor signaling, the loss of caspase 8 activity leads to receptor-interacting protein (RIP)-1/RIP-3-dependent necrotic cell death (necroptosis) upon TCR activation. The anti-apoptotic protein c-FLIP (cellular caspase 8 (FLICE)-like inhibitory protein) suppresses death receptor-induced caspase 8 activation. Moreover, recent findings suggest that c-FLIP is also involved in inhibiting necroptosis and autophagy. It remains unclear whether c-FLIP protects primary T lymphocytes from necroptosis or regulates the threshold at which autophagy occurs. Here, we used a c-FLIP isoform-specific conditional deletion model to show that c-FLIPL-deficient T cells underwent RIP-1-dependent necroptosis upon TCR stimulation. Interestingly, although previous studies have only described necroptosis in the absence of caspase 8 activity, we found that pro-apoptotic caspase 8 activity and apoptosis were also enhanced in c-FLIPL-deficient T lymphocytes. Furthermore, c-FLIPL-deficient T cells exhibited enhanced autophagy, which served a cytoprotective function. Together, these findings indicate that c-FLIPL plays an important antinecroptotic role and is a key regulator of apoptosis, autophagy, and necroptosis in T lymphocytes.  相似文献   

12.
Xie K  Zhang XW  Huang L  Wang YT  Lei Y  Rong J  Qian CW  Xie QL  Wang YF  Hong A  Xiong S 《Cytotechnology》2011,63(4):345-350
A novel, optical sensor was fixed in a new type of disposable bioreactor, Tubespin, for the on-line (real-time) monitoring of dissolved oxygen concentrations during cell culture. The cell density, viability and volumetric mass transfer coefficient were also determined to further characterize the bioreactors. The kLa value of the Tubespin at standard conditions was 24.3 h−1, while that of a spinner flask was only 2.7 h−1. The maximum cell density in the Tubespin bioreactor reached 6 × 106 cells mL−1, which was two times higher than the cell density in a spinner flask. Furthermore, the dynamic dissolved oxygen level was maintained above 90% air-saturation in the Tubespin, while the value was only 1.9% in a spinner flask. These results demonstrate the competitive advantage of using the Tubespin system over spinner flasks for process optimization and scale-down studies of oxygen transfer and cell growth.  相似文献   

13.
In spite of various cytogenetic works on suborder Heteroptera, the chromosome organization, function and its evolution in this group is far from being fully understood. Cytologically, the family Rhyparochromidae constitutes a heterogeneous group differing in chromosome numbers. This family possesses XY sex mechanism in the majority of the species with few exceptions. In the present work, multiple banding techniques viz., C-banding, base-specific fluorochromes (DAPI/CMA3) and silver nitrate staining have been used to cytologically characterize the chromosomes of the seed plant pest Elasmolomus (Aphanus) sordidus Fabricius, 1787 having 2n=12=8A+2m+XY. One pair of the autosomes was large while three others were of almost equal size. At diplotene, C-banding technique revealed, that three autosomal bivalents show terminal constitutive heterochromatic bands while one medium sized bivalent was euchromatic. Microchromosomes (m-chromosomes) were positively heteropycnotic. After DAPI and CMA3 staining, all the autosomal bivalents showed equal fluorescence, except CMA3 positive signals, observed at both telomeric heterochromatic regions of one medium sized autosomal bivalent. Silver nitrate staining further revealed that this chromosome pair carries Nucleolar Organizer Regions (NORs) at the location of CMA3 positive signals. The X chromosome showed a thick C-band, positive to both DAPI /CMA3 while Y, otherwise C-negative, was weakly positive to DAPI and negative to CMA3, m-chromosomes were DAPI bright and CMA3 dull.  相似文献   

14.
Efrapeptins (EF), a family of fungal peptides, inhibit proteasomal enzymatic activities and the in vitro and in vivo growth of HT-29 cells. They are also known inhibitors of F1F0-ATPase, a mitochondrial enzyme that functions as an Hsp90 co-chaperone. We have previously shown that treatment of cancer cells with EF results in disruption of the Hsp90:F1F0-ATPase complex and inhibition of Hsp90 chaperone activity. The present study examines the effect of EF on breast cancer growth in vitro and in vivo. As a monotherapy, EF inhibited cell proliferation in vitro with an IC50 value ranging from 6 nM to 3.4 μM. Inhibition of Hsp90 chaperone function appeared to be the dominant mechanism of action and the factor determining cellular sensitivity to EF. In vitro inhibition of proteasome became prominent in the absence of adequate levels of Hsp90 and F1F0-ATPase as in the case of the relatively EF-resistant MDA-MB-231 cell line. In vivo, EF inhibited MCF-7 and MDA-MB-231 xenograft growth with a maximal inhibition of 60% after administration of 0.15 and 0.3 mg/kg EF, respectively. 2-Deoxyglucose (2DG), a known inhibitor of glycolysis, acted synergistically with EF in vitro and antagonistically in vivo. In vitro, the synergistic effect was attributed to a prolonged endoplasmic reticulum (ER) stress. In vivo, the antagonistic effect was ascribed to the downregulation of tumoral and/or stromal F1F0-ATPase by 2DG.  相似文献   

15.
Bilayer asymmetry in the apical membrane may be important to the barrier function exhibited by epithelia in the stomach, kidney, and bladder. Previously, we showed that reduced fluidity of a single bilayer leaflet reduced water permeability of the bilayer, and in this study we examine the effect of bilayer asymmetry on permeation of nonelectrolytes, gases, and protons. Bilayer asymmetry was induced in dipalmitoylphosphatidylcholine liposomes by rigidifying the outer leaflet with the rare earth metal, praseodymium (Pr3+). Rigidification was demonstrated by fluorescence anisotropy over a range of temperatures from 24 to 50 degrees C. Pr3+-treatment reduced membrane fluidity at temperatures above 40 degrees C (the phase-transition temperature). Increased fluidity exhibited by dipalmitoylphosphatidylcholine liposomes at 40 degrees C occurred at temperatures 1-3 degrees C higher in Pr3+-treated liposomes, and for both control and Pr3+-treated liposomes permeability coefficients were approximately two orders of magnitude higher at 48 degrees than at 24 degrees C. Reduced fluidity of one leaflet correlated with significantly reduced permeabilities to urea, glycerol, formamide, acetamide, and NH3. Proton permeability of dipalmitoylphosphatidylcholine liposomes was only fourfold higher at 48 degrees than at 24 degrees C, indicating a weak dependence on membrane fluidity, and this increase was abolished by Pr3+. CO2 permeability was unaffected by temperature. We conclude: (a) that decreasing membrane fluidity in a single leaflet is sufficient to reduce overall membrane permeability to solutes and NH3, suggesting that leaflets in a bilayer offer independent resistances to permeation, (b) bilayer asymmetry is a mechanism by which barrier epithelia can reduce permeability, and (c) CO(2) permeation through membranes occurs by a mechanism that is not dependent on fluidity.  相似文献   

16.
概述了间隙连接的结构和功能,以及pH值、电压、生长因子对它的调节作用.间隙连接作为相邻细胞间信息物质通道,起着传递细胞信息,协调细胞群体功能的作用,但是其形成过程以及对机体生理功能影响的研究有待进一步深入.pH值降低可引起间隙连接通道的关闭,电压升高降低通道的导电性,生长因子可通过影响间隙连接蛋白的形成和降解、促使间隙连接蛋白磷酸化调节其通透性.  相似文献   

17.
H+ currents in human neutrophils, rat alveolar epithelial cells, and several mammalian phagocyte cell lines were studied using whole-cell and excised-patch tight-seal voltage clamp techniques at temperatures between 6 and 42°C. Effects of temperature on gating kinetics were distinguished from effects on the H+ current amplitude. The activation and deactivation of H+ currents were both highly temperature sensitive, with a Q 10 of 6–9 (activation energy, E a, ≈ 30–38 kcal/mol), greater than for most other ion channels. The similarity of E a for channel opening and closing suggests that the same step may be rate determining. In addition, when the turn-on of H+ currents with depolarization was fitted by a delay and single exponential, both the delay and the time constant (τact) had similarly high Q 10. These results could be explained if H+ channels were composed of several subunits, each of which undergoes a single rate-determining gating transition. H+ current gating in all mammalian cells studied had similarly strong temperature dependences. The H+ conductance increased markedly with temperature, with Q 10 ≥ 2 in whole-cell experiments. In excised patches where depletion would affect the measurement less, the Q 10 was 2.8 at >20°C and 5.3 at <20°C. This temperature sensitivity is much greater than for most other ion channels and for H+ conduction in aqueous solution, but is in the range reported for H+ transport mechanisms other than channels; e.g., carriers and pumps. Evidently, under the conditions employed, the rate-determining step in H+ permeation occurs not in the diffusional approach but during permeation through the channel itself. The large E a of permeation intrinsically limits the conductance of this channel, and appears inconsistent with the channel being a water-filled pore. At physiological temperature, H+ channels provide mammalian cells with an enormous capacity for proton extrusion.  相似文献   

18.

Rationale

Plasma soluble Receptor for Advanced Glycation End Product (sRAGE) is considered as a biomarker in COPD. The contribution of endogenous sRAGE (esRAGE) to the pool of plasma sRAGE and the implication of both markers in COPD pathogenesis is however not clear yet. The aim of the current study was therefore to measure plasma levels of esRAGE comparative to total sRAGE in patients with COPD and a control group. Further, we established the relations of esRAGE and total sRAGE with disease specific characteristics such as lung function and DLCO, and with different circulating AGEs.

Methods

Plasma levels of esRAGE and sRAGE were measured in an 88 patients with COPD and in 55 healthy controls. FEV1 (%predicted) and FEV1/VC (%) were measured in both groups; DLCO (%predicted) was measured in patients only. In this study population we previously reported that the AGE Nϵ-(carboxymethyl) lysine (CML) was decreased, Nϵ-(carboxyethyl) lysine (CEL) increased and pentosidine was not different in plasma of COPD patients compared to controls.

Results

Plasma esRAGE (COPD: 533.9 ± 412.4, Controls: 848.7 ± 690.3 pg/ml; p = 0.000) was decreased in COPD compared to controls. No significant correlations were observed between plasma esRAGE levels and lung function parameters or plasma AGEs. A positive correlation was present between esRAGE and total sRAGE levels in the circulation. Confirming previous findings, total sRAGE (COPD: 512.6 ± 403.8, Controls: 1834 ± 804.2 pg/ml; p < 0.001) was lower in patients compared to controls and was positively correlated FEV1 (r = 0.235, p = 0.032), FEV1/VC (r = 0.218, p = 0.047), and DLCO (r = 0.308, p = 0.006). sRAGE furthermore did show a significant positive association with CML (r = 0.321, p = 0.003).

Conclusion

Although plasma esRAGE is decreased in COPD patients compared to controls, only total sRAGE showed a significant and independent association with FEV1, FEV1/VC and DLCO, indicating that total sRAGE but not esRAGE may serve as marker of COPD disease state and severity.  相似文献   

19.
IF1 is an endogenous inhibitor protein of mitochondrial ATP synthase. It is evolutionarily conserved throughout all eukaryotes and it has been proposed to play crucial roles in prevention of the wasteful reverse reaction of ATP synthase, in the metabolic shift from oxidative phosphorylation to glycolysis, in the suppression of ROS (reactive oxygen species) generation, in mitochondria morphology and in haem biosynthesis in mitochondria, which leads to anaemia. Here, we report the phenotype of a mouse strain in which IF1 gene was destroyed. Unexpectedly, individuals of this IF1-KO (knockout) mouse strain grew and bred without defect. The general behaviours, blood test results and responses to starvation of the IF1-KO mice were apparently normal. There were no abnormalities in the tissue anatomy or the autophagy. Mitochondria of the IF1-KO mice were normal in morphology, in the content of ATP synthase molecules and in ATP synthesis activity. Thus, IF1 is not an essential protein for mice despite its ubiquitous presence in eukaryotes.  相似文献   

20.
Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号