首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation-reduction midpoint potentials for flavin, heme, and molybdenum-pterin prosthetic groups of assimilatory nitrate reductase (NR) from Chlorella vulgaris were measured at room temperature by using CD and EPR potentiometry. The CD changes accompanying reduction of each prosthetic group were determined by using enzyme fragments containing either FAD or heme and molybdenum prosthetic groups, obtained by limited proteolysis, and by poising the enzyme at various redox potentials in the presence of dye mediators. Limited proteolysis did not appear to alter the environment of the prosthetic groups, as judged by their CD spectra. Also, CD potentiometric titration of FAD in intact NR (Em' = -272 mV, n = 2) gave a similar value (Em' = -286 mV) to the FAD of the flavin-containing proteolytic domain, determined by visible spectroscopy. Less than 1% of the flavin semiquinone was detected by EPR spectroscopy, indicating that Em' (FAD/FAD.-) may be more than 200 mV lower than Em' (FAD.-/FADH-). Reduction of heme resulted in splitting of both Soret and alpha CD bands into couplets. The heme Em' was -162 mV (n = 1) determined by both CD and visible spectroscopy. Reduction of Mo-pterin was followed by CD at 333 nm, and Mo(V) was monitored by room temperature EPR spectroscopy. Most of the change in the Mo-pterin CD spectrum was due to the Mo(VI)/Mo(V) transition. The Em' values determined for Mo(VI)/Mo(V) were +26 mV by CD and +16 mV by EPR, whereas Mo(V)/Mo(IV) values were -40 mV by CD and -26 mV by EPR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Thioredoxin is a small oxidation-reduction (redox) mediator protein. Its reduction by NADPH is catalyzed by the flavoenzyme thioredoxin reductase. Site-directed mutagenesis has provided forms of the reductase in which Cys135 and Cys138 have each been changed to a serine residue (Prongay, A. J., Engelke, D. R., and Williams, C. H., Jr. (1989) J. Biol. Chem. 264, 2656-2664). Cys135 and Cys138 form the redox-active disulfide in the oxidized enzyme. The redox properties of the two altered forms of Escherichia coli thioredoxin reductase have been determined from pH 6.0 to 9.0. Photoreduction of TRR(Ser135,Cys138) produces the blue, neutral semiquinone species, which disproportionates (Kf = 0.73) to an apparent maximum of 29% of the total enzyme as the semiquinone. In contrast, the semiquinone formed on TRR(Cys135,Ser138) during a photoreductive titration does not disproportionate and 70% of the enzyme is stabilized as the semiquinione. Reductive titrations have demonstrated that 1 mol of sodium dithionite (2 electrons)/mol of FAD is required to fully reduce TRR(Ser135,Cys138) whereas 2 mol of dithionite/mol of FAD are required to fully reduce TRR(Cys135,Ser138). The oxidation-reduction midpoint potentials for the 1-electron and 2-electron reductions of TRR(Ser135,Cys138) have been determined by NADH/NAD+ titrations in the presence of a mediator, benzyl viologen. The midpoint potential for the 2-electron reduction of TRR(Ser135,Cys138) is -280 mV, at pH 7.0 and 20 degrees C. Thus, the redox potential is similar to that of the FAD/FADH2 couple in the dithiol form of wild type enzyme, -270 mV (corrected to 20 degrees C) (O'Donnell, M. E., and Williams, C. H., Jr. (1983) J. Biol. Chem. 258, 13795-13805). The delta Em/delta pH is -57.1 mV, which corresponds to a proton stoichiometry of 2 H+/2 e-.A maximum of 19% of the enzyme forms a stable semiquinone species during the titration, and the potentials for the oxidized enzyme/semiquinone couple, E2, and the semiquinone/reduced enzyme couple, E1, are -306 and -256 mV, respectively, at pH 7.0 and 20 degrees C. These studies provide evidence that the residue at position 138 exerts a greater effect on the FAD than does the residue at position 135.  相似文献   

3.
Hoke KR  Cobb N  Armstrong FA  Hille R 《Biochemistry》2004,43(6):1667-1674
Arsenite oxidase from Alcaligenes faecalis, an unusual molybdoenzyme that does not exhibit a Mo(V) EPR signal during oxidative-reductive titrations, has been investigated by protein film voltammetry. A film of the enzyme on a pyrolytic graphite edge electrode produces a sharp two-electron signal associated with reversible reduction of the oxidized Mo(VI) molybdenum center to Mo(IV). That reduction or oxidation of the active site occurs without accumulation of Mo(V) is consistent with the failure to observe a Mo(V) EPR signal for the enzyme under a variety of conditions and is indicative of an obligate two-electron center. The reduction potential for the molybdenum center, 292 mV (vs SHE) at pH 5.9 and 0 degrees C, exhibits a linear pH dependence for pH 5-10, consistent with a two-electron reduction strongly coupled to the uptake of two protons without a pK in this range. This suggests that the oxidized enzyme is best characterized as having an L(2)MoO(2) rather than L(2)MoO(OH) center in the oxidized state and that arsenite oxidase uses a "spectator oxo" effect to facilitate the oxo transfer reaction. The onset of the catalytic wave observed in the presence of substrate correlates well with the Mo(VI/IV) potential, consistent with catalytic electron transport that is limited only by turnover at the active site. The one-electron peaks for the iron-sulfur centers are difficult to observe by protein film voltammetry, but spectrophotometric titrations have been carried out to measure their reduction potentials: at pH 6.0 and 20 degrees C, that of the [3Fe-4S] center is approximately 260 mV and that of the Rieske center is approximately 130 mV.  相似文献   

4.
The absorbance contributions of the FAD and Fe2S2 redox centres of component C of the soluble methane monooxygenase complex have been resolved, using mersalyl to destroy the Fe2S2 centre. The Fe2S2 seems to be very similar to that of spinach ferredoxin, by its absorbance and electron paramagnetic resonance (EPR) spectra, and the FAD semiquinone is a neutral semiquinone. Spectrophotometry near room temperature and EPR spectroscopy near liquid-helium temperature allow the three redox couples of component C to be ordered. Component C can exist in Oe-1 (oxidised), 1e-1 (semiquinone), 2e-1 (mostly semiquinone and reduced Fe2S2), and 3e-1 forms (dihydroquinone and reduced Fe2S2), under equilibrium conditions. The ability of component C to support odd-electron forms is consistent with its proposed role as a 2e-1/1e-1 transformase, splitting electron pairs from NADH for passage to component A in one-electron steps. (The FAD appears to interact with NADH, and transfers single electrons to the Fe2S2, for donation to component A at a constant redox potential.) The mid-point potentials of component C were found using redox dyes and EPR spectroscopy and were: FAD/FAD., Em = -150 mV; Fe2S2/Fe2.S2,Em = -220 mV; FAD./FAD..,Em = -260 mV. the presence of NADH did not alter these mid-point potentials. These mid-point potentials are consistent with the role of component C as the NADH:component A reductase, passing electrons from NADH (Em = -320 mV) onto component A (Em = +150 mV and Em = -150 mV). The reducing power from NADH appears to be required by component A to activate one atom of oxygen, to insert into methane, and the reducing equivalents derived from NADH end up with the other oxygen atom, as water.  相似文献   

5.
Several aspects of the interaction of xanthine oxidase with arsenite are investigated. Room temperature potentiometric titrations using EPR to monitor Molybdenum reduction reveal midpoint potentials of -225 mV for the Mo(VI)-arsenite/Mo(V)-arsenite couple and -440 mV for the Mo(V)-arsenite/Mo(IV)-arsenite couple at pH 8.3. Under the same conditions, the values for native enzyme are -395 mV and -420 mV, respectively. The predicted effects of the altered Mo(VI)/Mo(V) potential on the distributions of reducing equivalents in partially reduced enzyme are compared with the experimentally observed effects in optical experiments. The bleaching that occurs on reduction of the chromophore that is generated when arsenite binds to oxidized enzyme is characterized and found to be associated with reduction of Mo(V)-arsenite to Mo(V)-arsenite. This probe enables determination of the midpoint potential for this conversion using optical data. From such data at a series of pH values ranging from 6.15 to 9.9, a pH dependence of -60 mV/pH unit increase is determined for this couple above pH 7. The ability of arsenite to bind to reduced xanthine oxidase and to desulfo enzyme are also investigated. Reduced active enzyme binds arsenite much more tightly (Kd less than 0.1 microM) and more rapidly than does oxidized active enzyme (Kd = 8 microM); oxidized desulfo enzyme binds arsenite almost as tightly (Kd = 20 microM) as does the oxidized active enzyme.  相似文献   

6.
The oxidation-reduction midpoint potentials, Em, of the FAD and active site disulfide couples of Escherichia coli thioredoxin reductase have been determined from pH 5.5 to 8.5. The FAD and disulfide couples have similar Em values and thus a linked equilibrium of four microscopic enzyme oxidation-reduction states exists. The binding of phenylmercuric acetate to one enzyme form could be monitored which allowed solving the four microscopic Em values. The Em values at pH 7.0 and 12 degrees C of the four couples of thioredoxin reductase are: (S)2-enzyme-FAD/FADH2 = -0.243 V, (SH)2-enzyme-FAD/FADH2 = -0.260 V, (FAD)-enzyme-(S)2/(SH)2 = -0.254 V, and (FADH2)-enzyme-(S)2/(SH)2 = -0.271 V. Thus, at pH 7.0, the FAD and disulfide moieties have a 0.017-V negative interaction and Em values which are different by 0.011 V. The delta Em/delta pH of the FAD couples E2m and E3m are about 0.060 V/pH throughout the pH range studied, showing an approximately 2-proton stoichiometry of reduction of the enzyme FAD. The delta Em/delta pH of the disulfide couples E1m and E4m are about 0.052 V/pH from pH 5.5 to 8.5, showing an apparently nonintegral proton stoichiometry of reduction of 1.8 in this pH range. This proton stoichiometry suggests the presence of a base with an ionization behavior that is linked to the oxidation-reduction state of the disulfide. A novel method is presented for determining the pK values on oxidized and reduced enzyme which agrees with the less accurate classical method. The proton stoichiometry results are consistent with the presence of a thiol-base ion pair in which the pK of the base is elevated from 7.6 in disulfide containing enzyme to greater than 8.5 upon forming an ion pair with a thiol anion of pK 7.0 generated upon reduction of the disulfide. The fluorescence of the FAD in thioredoxin reductase decreases as the pH is lowered with a pK of 7.0, direct evidence for a base near the FAD probably distinct from the base interacting with the dithiol.  相似文献   

7.
Potentiometric titrations of pig liver electron-transfer flavoprotein (ETF) were performed at pH 7.5 and 4 degrees C, both in the reductive and oxidative directions. Reduction of ETF to the hydroquinone form required a total of two reducing equivalents/mol of ETF with the formation of sub-stoichiometric amounts of anionic semiquinone as an intermediate. The oxidation-reduction potentials for the two one-electron couples, oxidized ETF/ETF semiquinone and ETF semiquinone/fully reduced ETF, are +4 mV and -50 mV respectively. The overall midpoint potential for the two-electron couple (oxidized ETF/fully reduced ETF) is -23 mV.  相似文献   

8.
The EPR and redox properties of the metal complexes in CO dehydrogenase (CODH) from Clostridium thermoaceticum were studied. Controlled potential coulometric reductive titrations of CODH were performed under argon and CO2 atmospheres. In the titrations performed under argon, five to eight electrons/dimer were required for reduction, and four distinct EPR signals appeared. These included a signal with gave = 1.82 (Em approximately -220 mV), two signals with the same g values but different linewidths at gave = 1.94 (Em approximately -440 mV), and a signal at gave = 1.86 (Em approximately -530 mV). All of the S = 1/2 EPR signals had low spin concentrations; values between 0.2 and 0.3 spins/dimer were typically obtained for each signal. Features between g = 6 and 4, typical of S = 3/2 states, were also observed, and these may account, at least to some degree, for the low spin concentration values. Under CO2, and at negative potentials, CODH served as an electrocatalyst in the reduction of CO2 to CO. The apparent half-maximal activity for this reduction at pH 6.3 occurred at -430 mV, a potential near the thermodynamic value. An EPR signal, arising from a complex containing Ni, Fe, and the carbon from CO/CO2 developed along with this activity. The reduction of this complex is probably the last step to occur prior to the catalysis of CO2 reduction.  相似文献   

9.
Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced forms. The oxidized enzyme has absorbance peaks at 280, 350, 470, 550, and 720 nm while the dithionite-reduced enzyme has peaks at 280, 374, and 645 nm with a shoulder at 430 nm. A comparison of the absorbance spectrum of oxidized Me2SO reductase with that of the molybdenum fragment of rat liver sulfite oxidase shows that the 350 and 470 peaks are common to both proteins. EPR studies of the Mo(V) form of Me2SO reductase show a rhombic signal with g1 = 1.988, g2 = 1.977, g3 = 1.961, and g(ave) = 1.975. The signal shows evidence of coupling to an exchangeable proton with A1 = 1.05, A2 = 1.13, A3 = 0.98, and Aave = 1.05 millitesla. These parameters are similar to those of other Mo enzymes, however, the epr signal of this enzyme differs from those of other Mo hydroxylases in showing only a slight sensitivity to pH and no detectable anion effect. EPR potentiometric titrations of Me2SO reductase gave midpoint potentials of +144 mV for the Mo(VI)/Mo(V) couple and +160 mV for the Mo(V)/Mo(IV) couple at room temperature and +141 mV for the Mo(VI)/Mo(V) couple and +200 mV for the Mo(V)/Mo(IV) couple at 173 K.  相似文献   

10.
Potentiometric studies on yeast complex III   总被引:3,自引:0,他引:3  
Potentiometric measurements have been performed on Complex III from bakers' yeast. The midpoint potentials for the b and c cytochromes were measured using room-temperature MCD and liquid-helium temperature EPR. A value of 270 mV was obtained for cytochrome c1, regardless of temperature, while the midpoint potentials found for the two species of cytochrome b varied with temperatures, viz., 62 and -20 mV at room temperature (MCD) compared to 116 and -4 mV at about 10 K (EPR). The midpoint potential of the iron-sulfur center obtained by low-temperature EPR was 286 mV. An abrupt conformational change occurred immediately after this center was fully reduced resulting in a change in EPR line shape. The potentials of the two half-reactions of ubiquinone were measured by following the semiquinone radical signal at 110 K and 23 degrees C. Potentials of 176 and 51 mV were found at low temperature, while values of 200 and 110 mV were observed at room temperature. The midpoint potential of cytochrome c1 was found to be pH independent. The potentials of cytochrome b were also independent of pH when titrations were performed in deoxycholate buffers, while a variation of -30 mV per pH unit was observed for both cytochrome c species in taurocholate buffers. These two detergents also produced different MCD contributions of the two b cytochromes. A decrease in Em of greater than 300 mV was found in potentiometric measurements of cytochrome c1 at high ratios of dye to Complex III. Antimycin does not affect the redox potentials of cytochrome c1 but appears to induce a transition of the low-potential b heme to a high-potential species. This transition is mediated by ubiquinone.  相似文献   

11.
The antimycin-sensitive ubisemiquinone radical (QC) of the ubiquinol-cytochrome c oxidoreductase of submitochondrial particles and chromatophores of Rhodopseudomonas sphaeroides Ga has been studied by a combination of redox potentiometry and EPR spectroscopy. This g = 2.005 radical signal appears at physiological pH values and increases in intensity with increasing pH up to pH 7.6 in submitochondrial particles and pH 9.0 in R. sphaeroides after which its intensity remains unchanged. The Em7 (ubiquinone/quinol) of the signal, estimated from redox titration data is 80 mV for submitochondrial particles, and 150 mV in chromatophores. Each of these values is higher than that of the quinone pool by 20 mV in submitochondrial particles and 60 mV in R. sphaeroides. This indicates that the quinone at the binding site is out of equilibrium with the pool, and that binding site preferentially binds quinol over quinone. Analysis of the shapes of the semiquinone titration curves, taken together with the midpoint elevation, indicates a quinone-binding site: cytochrome c1 stoichiometry of 1:1 in both submitochondrial particles and chromatophores. At its maximal intensity, the semiquinone concentration at the binding site is 0.26 in submitochondrial particles (greater than pH 7.6) and 0.4 in chromatophores (greater than pH 9.0). In both systems, the midpoint of the ubiquinone/ubisemiquinone couple is constant as the pH is raised up to the pH of maximal semiquinone formation whereafter it becomes more negative at the rate of -60 mV/pH unit. The midpoint of the ubisemiquinone/quinol couple, on the other hand, varies by -120 mV/pH unit at pH values up to the transition pH, after which it, too, changes by -60 mV/pH unit. This seemingly anomalous behavior may be explained by invoking a protonated group at or near the quinone-binding site whose pK corresponds to the pH transition point in the quinone/semiquinone/quinol redox chemistry when the site is free or when quinone or quinol occupies the site. This pK is elevated to at least pH 9.0 in submitochondrial particles and 10.5 in R. sphaeroides when semiquinone is bound to the site.  相似文献   

12.
4-Hydroxybenzoyl-CoA reductase (4-HBCR) is a key enzyme in the anaerobic metabolism of phenolic compounds. It catalyzes the reductive removal of the hydroxyl group from the aromatic ring yielding benzoyl-CoA and water. The subunit architecture, amino acid sequence, and the cofactor/metal content indicate that it belongs to the xanthine oxidase (XO) family of molybdenum cofactor-containing enzymes. 4-HBCR is an unusual XO family member as it catalyzes the irreversible reduction of a CoA-thioester substrate. A radical mechanism has been proposed for the enzymatic removal of phenolic hydroxyl groups. In this work we studied the spectroscopic and electrochemical properties of 4-HBCR by EPR and M?ssbauer spectroscopy and identified the pterin cofactor as molybdopterin mononucleotide. In addition to two different [2Fe-2S] clusters, one FAD and one molybdenum species per monomer, we also identified a [4Fe-4S] cluster/monomer, which is unique among members of the XO family. The reduced [4Fe-4S] cluster interacted magnetically with the Mo(V) species, suggesting that the centers are in close proximity, (<15 A apart). Additionally, reduction of the [4Fe-4S] cluster resulted in a loss of the EPR signals of the [2Fe-2S] clusters probably because of magnetic interactions between the Fe-S clusters as evidenced in power saturation studies. The Mo(V) EPR signals of 4-HBCR were typical for XO family members. Under steady-state conditions of substrate reduction, in the presence of excess dithionite, the [4Fe-4S] clusters were in the fully oxidized state while the [2Fe-2S] clusters remained reduced. The redox potentials of the redox cofactors were determined to be: [2Fe-2S](+1/+2) I, -205 mV; [2Fe-2S] (+1/+2) II, -255 mV; FAD/FADH( small middle dot)/FADH, -250 mV/-470 mV; [4Fe-4S](+1/+2), -465 mV and Mo(VI)/(V)/(VI), -380 mV/-500 mV. A catalytic cycle is proposed that takes into account the common properties of molybdenum cofactor enzymes and the special one-electron chemistry of dehydroxylation of phenolic compounds.  相似文献   

13.
The heterogeneity of arginases in rat tissues.   总被引:11,自引:0,他引:11       下载免费PDF全文
1. The mid-point reduction potentials of the various groups in xanthine oxidase from bovine milk were determined by potentiometric titration with dithionite in the presence of dye mediators, removing samples for quantification of the reduced species by e.p.r. (electron-paramagnetic-resonance) spectroscopy. The values obtained for the functional enzyme in pyrophosphate buffer, pH8.2, are: Fe/S centre I, -343 +/- 15mV; Fe/S II, -303 +/- 15mV; FAD/FADH-; -351 +/- 20mV; FADH/FADH2, -236 +/-mV; Mo(VI)/Mo(V) (Rapid), -355 +/- 20mV; Mo(V) (Rapid)/Mo(IV), -355 +/- 20mV. 2. Behaviour of the functional enzyme is essentially ideal in Tris but less so in pyrophosphate. In Tris, the potential for Mo(VI)/Mo(V) (Rapid) is lowered relative to that in pyrophosphate, but the potential for Fe/S II is raised. The influence of buffer on the potentials was investigated by partial-reduction experiments with six other buffers. 3. Conversion of the enzyme with cyanide into the non-functional form, which gives the Slow molybdenum signal, or alkylation of FAD, has little effect on the mid-point potentials of the other centres. The potentials associated with the Slow signal are: Mo(VI)/Mo(V) (Slow), -440 +/- 25mV; Mo(V) (Slow)/Mo(IV), -480 +/- 25 mV. This signal exhibits very sluggish equilibration with the mediator system. 4. The deviations from ideal behaviour are discussed in terms of possible binding of buffer ions or anti-co-operative interactions amongst the redox centres.  相似文献   

14.
The oxidation-reduction potentials of the various prosthetic groups in the native and desulfo forms of chicken liver xanthine dehydrogenase, determined by potentiometric titration in 0.05 m potassium phosphate buffer, pH 7.8, are: Mo(VI)/Mo(V) (native), ?357 mV; Mo(VI)/Mo(V) (desulfo), ?397 mV; Mo(V)/Mo(IV) (native), ?337 mV; Mo(V)/Mo(IV) (desulfo), ?433 mV; FAD/FADH · ?345 mV; FADH · FADH2, ? 377 mV; (Fe/S)Iox/(Fe/S)Ired, ?280 mV; (Fe/S)IIox/(Fe/S)IIred, ? 275 mV. Titration at pH 6.8 revealed that the Mo and FAD centers but not the Fe/S centers are in prototropic equilibrium. Spectroscopic studies on the native and deflavinated enzymes show that environment of the flavin in xanthine dehydrogenase differs from that in bovine milk xanthine oxidase.  相似文献   

15.
Electron-transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is an iron-sulfur flavoprotein that accepts electrons from electron-transfer flavoprotein (ETF) and reduces ubiquinone from the Q-pool. ETF-QO contains a single [4Fe-4S]2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated oxidized enzyme and can be reduced to paramagnetic forms by enzymatic donors or dithionite. Mutations were introduced by site-directed mutagenesis of amino acids in the vicinity of the iron-sulfur cluster of Rhodobacter sphaeroides ETF-QO. Y501 and T525 are equivalent to Y533 and T558 in the porcine ETF-QO. In the porcine protein, these residues are within hydrogen-bonding distance of the Sgamma of the cysteine ligands to the iron-sulfur cluster. Y501F, T525A, and Y501F/T525A substitutions were made to determine the effects on midpoint potential, activity, and EPR spectral properties of the cluster. The integrity of the mutated proteins was confirmed by optical spectra, EPR g-values, and spin-lattice relaxation rates, and the cluster to flavin point-dipole distance was determined by relaxation enhancement. Potentiometric titrations were monitored by changes in the CW EPR signals of the cluster and semiquinone. Single mutations decreased the midpoint potentials of the iron-sulfur cluster from +37 mV for wild type to -60 mV for Y501F and T525A and to -128 mV for Y501F/T525A. Lowering the midpoint potential resulted in a decrease in steady-state ubiquinone reductase activity and in ETF semiquinone disproportionation. The decrease in activity demonstrates that reduction of the iron-sulfur cluster is required for activity. There was no detectable effect of the mutations on the flavin midpoint potentials.  相似文献   

16.
Oxidation-reduction midpoint potentials for the molybdenum center in assimilatory NADH:nitrate reductase isolated from spinach (Spinacia oleracea) have been determined at pH 7.0 in the presence of dye mediators using EPR spectroscopy to monitor formation of Mo(V). Values for the Mo(VI)/Mo(V) and Mo(V)/Mo(IV) couples were determined to be -8 and -42 mV, respectively.  相似文献   

17.
Protein film voltammetry (PFV) of Escherichia coli dimethyl sulfoxide (DMSO) reductase (DmsABC) adsorbed at a graphite electrode reveals that the catalytic activity of this complex Mo-pterin/Fe-S enzyme is optimized within a narrow window of electrode potential. The upper and lower limits of this window are determined from the potential dependences of catalytic activity in reducing and oxidizing directions; i.e., for reduction of DMSO (or trimethylamine-N-oxide) and oxidation of trimethylphosphine (PMe(3)). At either limit, the catalytic activity drops despite the increase in driving force: as the potential is lowered below -200 mV (pH 7.0-8.9), the rate of reduction of DMSO decreases abruptly, while for PMe(3), an oxidative current is observed that vanishes as the potential is raised above +20 mV (pH 9.0). Analysis of the waveshapes reveals that both activity thresholds result from one-electron redox reactions that arise, most likely, from groups within the enzyme; if so, they represent "switches" that reflect the catalytic mechanism and may be of physiological relevance. The potential window of activity coincides approximately with the appearance of the Mo(V) EPR signal observed in potentiometric titrations, suggesting that crucial stages of catalysis are facilitated while the active site is in the intermediate Mo(V) oxidation state.  相似文献   

18.
Midpoint reduction potentials for the flavin cofactors in human NADPH-cytochrome P450 oxidoreductase were determined by anaerobic redox titration of the diflavin (FAD and FMN) enzyme and by separate titrations of its isolated FAD/NADPH and FMN domains. Flavin reduction potentials are similar in the isolated domains (FAD domain E(1) [oxidized/semiquinone] = -286 +/- 6 mV, E(2) [semiquinone/reduced] = -371 +/- 7 mV; FMN domain E(1) = -43 +/- 7 mV, E(2) = -280 +/- 8 mV) and the soluble diflavin reductase (E(1) [FMN] = -66 +/- 8 mV, E(2) [FMN] = -269 +/- 10 mV; E(1) [FAD] = -283 +/- 5 mV, E(2) [FAD] = -382 +/- 8 mV). The lack of perturbation of the individual flavin potentials in the FAD and FMN domains indicates that the flavins are located in discrete environments and that these environments are not significantly disrupted by genetic dissection of the domains. Each flavin titrates through a blue semiquinone state, with the FMN semiquinone being most intense due to larger separation (approximately 200 mV) of its two couples. Both the FMN domain and the soluble reductase are purified in partially reduced, colored form from the Escherichia coli expression system, either as a green reductase or a gray-blue FMN domain. In both cases, large amounts of the higher potential FMN are in the semiquinone form. The redox properties of human cytochrome P450 reductase (CPR) are similar to those reported for rabbit CPR and the reductase domain of neuronal nitric oxide synthase. However, they differ markedly from those of yeast and bacterial CPRs, pointing to an important evolutionary difference in electronic regulation of these enzymes.  相似文献   

19.
T Iyanagi  S Watanabe  K F Anan 《Biochemistry》1984,23(7):1418-1425
The one-electron oxidation-reduction properties of flavin in hepatic NADH-cytochrome b5 reductase were investigated by optical absorption spectroscopy, electron paramagnetic resonance (EPR), and potentiometric titration. An intermediate with a peak at 375 nm previously described by Iyanagi (1977) [ Iyanagi , T. (1977) Biochemistry 16, 2725-2730] was confirmed to be a red anionic semiquinone. The NAD+-bound reduced enzyme was oxidized by cytochrome b5 via the semiquinone intermediate. This indicates that electron transfer from flavin to cytochrome b5 proceeds in two successive one-electron steps. Autoxidation of the NAD+-bound reduced enzyme was slower than that of the NAD+-free reduced enzyme and was accompanied by the appearance of an EPR signal. Midpoint redox potentials of the consecutive one-electron-transfer steps in the presence of excess NAD+ were Em,1 = -88 mV and Em,2 = 147 mV at pH 7.0. This corresponds to a semiquinone formation constant of 8. The values of Em,1 and Em,2 were also studied as a function of pH. A mechanism for electron transfer from NADH to cytochrome b5 is discussed on the basis of the one-electron redox potentials of the enzyme and is compared with the electron-transfer mechanism of NADPH-cytochrome P-450 reductase.  相似文献   

20.
The relaxation behavior of the EPR signals of MoV, FAD semiquinone, and the reduced Fe/S I center was measured in the presence and absence of other paramagnetic centers in milk xanthine oxidase. Specific pairs of prosthetic groups were rendered paramagnetic by poising the native enzyme or its desulfo glycol inhibited derivative at appropriate potentials and pH values. Magnetic interactions were found between the following species: Mo--Fe/S I (100-fold increase in microwave power required to saturate the MoV EPR signal at 103 K when Fe/S I is reduced as opposed to oxidized), FAD--Fe/S I and FAD--Fe/S II (70-fold increase in power required to saturate the FADH.EPR signal at 173 K when either Fe/S center is reduced), and Fe/S I--Fe/S II (2.5-fold increase in power to saturate the reduced Fe/S I EPR signal at 20 K when Fe/S II is reduced). The Mo--Fe/S I interaction was also detected as a reduced Fe/S I induced splitting of the MoV EPR spectrum at 30 K. No splittings of the FADH. or Fe/S center spectra were detected. No magnetic interactions were found between FAD and Mo or between Mo and Fe/S II. These results, together with those of Coffman & Buettner [Coffman, R. E., & Buettner, G. R. (1979) J. Phys. Chem. 83, 2392-2400], were used to estimate the following approximate distances between the electron carrying prosthetic groups of milk xamthine oxidase: Mo--Fe/S I, 11 +/- 3 A; Fe/S I-Fe/S II, 15 +/- 4 A; FAD-Fe/S I, 16 +/- 4 A; FAD-Fe/S II, 16 +/- 4 A. A model for the arrangement of these groups within the xanthine oxidase molecule is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号