首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Universal DNA base analogs having photocleavable properties would be of great interest for development of new nucleic acid fragmentation tools. The photocleavable 7-nitroindole 2′-deoxyribonucleoside d(7-Ni) was previously shown to furnish a highly efficient approach to photochemically trigger DNA backbone cleavage at preselected position when inserted in a DNA fragment. In the present report, we examine its potential use as universal DNA nucleoside, by analogy with the 5-nitroindole analog that is generally considered as universal base. The d(7-Ni) phosphoramidite was incorporated into oligonucleotides. Hybridization properties of resulting 11mer duplexes indicated a behavior close to that of the 5-nitroindole analog. Enzymatic recognition by Klenow fragment exonuclease-free using 40mers containing the unnatural bases as templates indicated notably a decrease of the polymerase activity with preferential incorporation of dAMP opposite both the 7-Ni and 5-Ni bases. Incorporation of the d(7-Ni) triphosphate was also studied indicating absence of significant differences between the incorporation kinetics opposite each natural base in the template. All the hybridization and enzymatic data indicate that 7-nitroindole can be considered as a cleavable base analog, although not strictly fulfilling, like the 5-nitro isomer, all properties required for a universal base.  相似文献   

2.
Effects of the universal base 5-nitroindole on the thermodynamic stability of DNA hairpins having a 6 bp stem and four base loops were investigated by optical absorbance and differential scanning calorimetry techniques. Melting studies were conducted in buffer containing 115 mM Na(+). Five different modified versions of DNA hairpins containing a 5-nitroindole base or bases substituted at different positions in the stem and loop regions were examined. Thermo-dynamic parameters of the melting transitions estimated from a two-state analysis of optical melting curves and measured directly by calorimetry revealed that the presence of 5-nitroindole bases in the duplex stem or loop regions of short DNA hairpins significantly affects both their enthalpic and entropic melting components in a compensating manner, while the transition free energy varies linearly with the transition temperature. The calorimetrically determined enthalpy and entropy values of the modified hairpins were considerably smaller (43-53%) than the two-state optical parameters, suggesting that solvent effects may be significant in the melting processes of these hairpins. Results of circular dichroism measurements also revealed slight differences between the modified hairpins and the control in both the duplex and melted states, suggesting subtle structural differences between the control and DNA hairpins containing a 5-nitroindole base or bases.  相似文献   

3.
D Loakes  D M Brown  S Linde    F Hill 《Nucleic acids research》1995,23(13):2361-2366
3-Nitropyrrole and 5-nitroindole have been assessed as universal bases in primers for dideoxy DNA sequencing and in the polymerase chain reaction (PCR). In contrast to a previous report, we have found that the introduction of more than one 3-nitropyrrole residue at dispersed positions into primers significantly reduced their efficiency in PCR and sequencing reactions. Primers containing 5-nitroindole at multiple dispersed positions were similarly affected; for both bases only a small number of substitutions were tolerated. In PCR experiments neither base, when incorporated into primers in codon third positions, was as effective as hypoxanthine, which was incorporated in six codon third positions in a 20mer oligomer. However, primers containing up to four consecutive 5-nitroindole substitutions performed well in both PCR and sequencing reactions. Consecutive 3-nitropyrrole substitutions were tolerated, but less well in comparable reactions.  相似文献   

4.
Acyclic nucleoside analogues with carboxamido- or nitro-substituted heterocyclic bases have been evaluated for their possible use as universal bases in oligodeoxynucleotides. The acyclic moiety endows the constructs with enough flexibility to allow good base stacking. The 5-nitroindazole analogue afforded the most stable duplexes among the acyclic derivatives with the least spread in Tm versus the four natural bases. In spite of the acyclic moiety, stabilities are comparable with those of duplexes incorporating the recently described 5-nitroindole nucleoside analogue, but considerably exceed those for the 3-nitropyrrole analogue.  相似文献   

5.
5-Nitroindole as an universal base analogue.   总被引:11,自引:7,他引:4       下载免费PDF全文
4-, 5- and 6-Nitroindole have been investigated and compared with 3-nitropyrrole as universal bases in oligodeoxynucleotides. Of these the 5-nitroindole derivative was found to be superior giving higher duplex stability, and behaving indiscriminately towards each of the four natural bases in duplex melting experiments. 3-Nitropyrrole, whilst not discriminating between the natural bases, was found to lead to considerable destabilisation of the duplexes, particularly when multiple substitutions were made, in contrast to the 5-nitroindole nucleoside.  相似文献   

6.
We studied the properties of DNA duplexes containing 5-nitroindole (N) in one of the chains. We synthesized 8-membered oligos with N at the 5' or at the 3' end: 5'-d(NXGACCGTC)-3' or 5'-d(GACCGTCXN)-3', where X is one of the four natural bases, making all four kinds of oligos with and without N. We also prepared 11-membered oligos complementary to the above octanucleotides: 5'-d(TGACGGTCYZT)-3' and 5'-d(TZYGACGGTCT)-3', where Y and Z are A, G, C, or T. The stability of duplexes obtained with these oligos was assessed by melting, and the thermodynamic parameters delta H, delta S, and Tm were calculated. Comparison of the melting curves for modified and nonmodified duplexes demonstrated that the presence of N at the 5' end of one chain raises the Tm by 6.6 degrees C on average; if N is at the 3' end of the same chain, the Tm increases by about 3 degrees C.  相似文献   

7.
8.
The synthesis of oligonucleotides containing 1-(2-deoxy-β-D-ribofuranosyl)-2-methyl-4-nitroindole and 1-(2-deoxy-β-D-ribofuranosyl)-2-phenyl-4-nitroindole is described. The synthesized modified oligonucleotides were used for studying the stability of intermolecular DNA duplexes with one unnatural strand and for evaluation of discriminating potential of 2-methyl-and 2-phenyl-4-nitroindoles toward nucleic bases. For comparison, an unmodified oligonucleotide and oligonucleotides bearing 5-nitroindole were used. It was shown that 2-methyl-4-nitroindole was only insignificantly inferior in stability to 5-nitroindole and characterized by a similar discriminating potential. 2-Phenyl-4-nitroindole provided a more pronounced duplex destabilization, the discrimination toward natural bases being decreased.  相似文献   

9.
A microchip method has been developed for massive and parallel thermodynamic analyses of DNA duplexes. Fluorescently labeled oligonucleotides were hybridized with oligonucleotides immobilized in the 100 x 100 x 20 mum gel pads of the microchips. The equilibrium melting curves for all microchip duplexes were measured in real time in parallel for all microchip duplexes. Thermodynamic data for perfect and mismatched duplexes that were obtained using the microchip method directly correlated with data obtained in solution. Fluorescent labels or longer linkers between the gel and the oligonucleotides appeared to have no significant effect on duplex stability. Extending the immobilized oligonucleotides with a four-base mixture from the 3'-end or one or two universal bases (5-nitroindole) from the 3'- and/or 5'-end increased the stabilities of their duplexes. These extensions were applied to increase the stabilities of the duplexes formed with short oligonucleotides in microchips, to significantly lessen the differences in melting curves of the AT- and GC-rich duplexes, and to improve discrimination of perfect duplexes from those containing poorly recognized terminal mismatches. This study explored a way to increase the efficiency of sequencing by hybridization on oligonucleotide microchips.  相似文献   

10.
Chemically modified bases are frequently used to stabilize nucleic acids, to study the driving forces for nucleic acid structure formation and to tune DNA and RNA hybridization conditions. In particular, fluorobenzene and fluorobenzimidazole base analogues can act as universal bases able to pair with any natural base and to stabilize RNA duplex formation. Although these base analogues are compatible with an A-form RNA geometry, little is known about the influence on the fine structure and conformational dynamics of RNA. In the present study, nano-second molecular dynamics (MD) simulations have been performed to characterize the dynamics of RNA duplexes containing a central 1'-deoxy-1'-(2,4-difluorophenyl)-beta-D-ribofuranose base pair or opposite to an adenine base. For comparison, RNA with a central uridine:adenine pair and a 1'-deoxy-1'-(phenyl)-beta-D-ribofuranose opposite to an adenine was also investigated. The MD simulations indicate a stable overall A-form geometry for the RNAs with base analogues. However, the presence of the base analogues caused a locally enhanced mobility of the central bases inducing mainly base pair shear and opening motions. No stable 'base-paired' geometry was found for the base analogue pair or the base analogue:adenine pairs, which explains in part the universal base character of these analogues. Instead, the conformational fluctuations of the base analogues lead to an enhanced accessibility of the bases in the major and minor grooves of the helix compared with a regular base pair.  相似文献   

11.
The efficiency of sequencing by hybridization to an oligonucleotide microchip grows with an increase in the number and in the length of the oligonucleotides; however, such increases raise enormously the complexity of the microchip and decrease the accuracy of hybridization. We have been developing the technique of contiguous stacking hybridization (CSH) to circumvent these shortcomings. Stacking interactions between adjacent bases of two oligonucleotides stabilize their contiguous duplex with DNA. The use of such stacking increases the effective length of microchip oligonucleotides, enhances sequencing accuracy and allows the sequencing of longer DNA. The effects of mismatches, base composition, length and other factors on the stacking are evaluated. Contiguous stacking hybridization of DNA with immobilized 8mers and one or two 5mers labeled with two different fluorescent dyes increases the effective length of sequencing oligonucleotides from 8 to 13 and 18 bases, respectively. The incorporation of all four bases or 5-nitroindole as a universal base into different positions of the 5mers permitted a decrease in the number of additional rounds of hybridization. Contiguous stacking hybridization appears to be a promising approach to significantly increasing the efficiency of sequencing by hybridization.  相似文献   

12.
DNA lesions produced by aromatic isocyanates have an extra bulky group on the nucleotide bases, with the capability of forming stacking interaction within a DNA helix. In this work, we investigated the conformation of the 2′-deoxyadenosine and 2′-deoxycytidine derivatives tethering a phenyl or naphthyl group, introduced in a DNA duplex. The chemical modification experiments using KMnO4 and 1-cyclohexyl-3 -(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate have shown that the 2′-deoxycytidine lesions form the base pair with guanine while the 2′-deoxyadenosine lesions have less ability of forming the base pair with thymine in solution. Nevertheless, the kinetic analysis shows that these DNA lesions are compatible with DNA ligase and DNA polymerase reactions, as much as natural DNA bases. We suggest that the adduct lesions have a capability of adopting dual conformations, depending on the difference in their interaction energies between stacking of the attached aromatic group and base pairing through hydrogen bonds. It is also presented that the attached aromatic groups change their orientation by interacting with the minor groove binding netropsin, distamycin and synthetic polyamide. The nucleotide derivatives would be useful for enhancing the phenotypic diversity of DNA molecules and for exploring new non-natural nucleotides.  相似文献   

13.
The synthesis of oligonucleotides containing 1-(2-deoxy-beta-D-ribofuranosyl)-2-methyl-4-nitroindole and 1-(2-deoxy-beta-D-ribofuranosyl)-2-phenyl-4-nitroindole is described. The synthesized modified oligonucleotides were used for studying the stability of intermolecular DNA duplexes with one unnatural strand and for evaluation of discriminating potential of 2-methyl- and 2-phenyl-4-nitroindoles toward nucleic bases. For comparison, an unmodified oligonucleotide and oligonucleotides bearing 5-nitroindole were used. It was shown that 2-methyl-4-nitroindole was only insignificantly inferior in stability to 5-nitroindole and characterized by a similar discriminating potential. 2-Phenyl-4-nitroindole provided a more pronounced duplex destabilization, the discrimination toward natural bases being decreased. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http:// www.maik.ru.  相似文献   

14.
We investigated the thermodynamic stability of double-stranded DNAs with an oxidative DNA lesion, 2-hydroxyadenine (2-OH-Ade), in two different sequence contexts (5′-GA*C-3′ and 5′-TA*A-3′, A* represents 2-OH-Ade). When an A*–N pair (N, any nucleotide base) was located in the center of a duplex, the thermodynamic stabilities of the duplexes were similar for all the natural bases except A (N = T, C and G). On the other hand, for the duplexes with the A*–N pair at the end, which mimic the nucleotide incorporation step, the stabilities of the duplexes were dependent on their sequence. The order of stability is T > G > C >> A in the 5′-GA*C-3′ sequences and T > A > C > G in the 5′-TA*A-3′ sequences. Because T/G/C and T/A are nucleotides incorporated opposite to 2-OH-Ade in the 5′-GA*C-3′ and 5′-TA*A-3′ sequences, respectively, these results agree with the tendency of mutagenic misincorporation of the nucleotides opposite to 2-OH-Ade in vitro. Thus, the thermodynamic stability of the A*–N base pair may be an important factor for the mutation spectra of 2-OH-Ade.  相似文献   

15.
The NMR structure of 2',5' d(GGGGCCCC) was determined to gain insights into the structural differences between 2',5'- and 3',5'-linked DNA duplexes that may be relevant in elucidating nature's choice of sugar-phosphate links to encode genetic information. The oligomer assumes a duplex with extended nucleotide repeats formed out of mostly N-type sugar puckers. With the exception of the 5'-terminal guanine that assumes the syn glycosyl conformation, all other bases prefer the anti glycosyl conformation. Base pairs in the duplex exhibit slide (-1.96 A) and intermediate values for X-displacement (-3.23 A), as in ADNA, while their inclination to the helical axis is not prominent. Major and minor grooves display features intermediate to A and BDNA. The duplex structure of iso d(GGGGCCCC) may therefore be best characterized as a hybrid of A and BDNA. Importantly, the results confirm that even 3' deoxy 2',5' DNA supports duplex formation only in the presence of distinct slide (>or=-1.6 A) and X-displacement (>or=-2.5 A) for base pairs, and hence does not favor an ideal BDNA topology characterized by their near-zero values. Such restrictions on base pair movements in 2',5' DNA, which are clearly absent in 3',5' DNA, are expected to impose constraints on its ability for deformability of the kind observed in DNA during its compaction and interaction with proteins. It is therefore conceivable that selection pressure relating to the optimization of topological features might have been a factor in the rejection of 2',5' links in preference to 3',5' links.  相似文献   

16.
The incorporation of the bicyclic cytosine analogue 7,8-dihydropyrido[2,3-d]pyrimidin-2-one (X) into DNA duplexes results in a significant enhancement of their stability (3–4 K per modification). To establish the effects of X on the local hydrogen-bonding and base stacking interactions and the overall DNA conformation, and to obtain insights into the correlation between the structure and stability of X-containing DNA duplexes, the crystal structures of [d(CGCGAATT-X-GCG)]2 and [d(CGCGAAT-X-CGCG)]2 have been determined at 1.9–2.9 Å resolutions. In all of the structures, the analogue X base pairs with the purine bases on the opposite strands through Watson–Crick and/or wobble type hydrogen bonds. The additional ring of the X base is stacked on the thymine bases at the 5′-side and overall exhibits greatly enhanced stacking interactions suggesting that this is a major contribution to duplex stabilization.  相似文献   

17.
Parallel thermodynamic analysis of the coaxial stacking effect of two bases localized in one strand of DNA duplexes has been performed. Oligonucleotides were immobilized in an array of three-dimensional polyacrylamide gel pads of microchips (MAGIChips‘). The stacking effect was studied for all combinations of two bases and assessed by measuring the increase in melting temperature and in the free energy of duplexes formed by 5mers stacked to microchip-immobilized 10mers. For any given interface, the effect was studied for perfectly paired bases, as well as terminal mismatches, single base overlaps, single and double gaps, and modified terminal bases. Thermodynamic parameters of contiguous stacking determined by using microchips closely correlated with data obtained in solution. The extension of immobilized oligonucleotides with 5,6-dihydroxyuridine, a urea derivative of deoxyribose, or by phosphate, decreased the stacking effect moderately, while extension with FITC or Texas Red virtually eliminated stacking. The extension of the immobilized oligonucleotides with either acridine or 5-nitroindole increased stacking to mispaired bases and in some GC-rich interfaces. The measurements of stacking parameters were performed in different melting buffers. Although melting temperatures of AT- and GC-rich oligonucleotides in 5 M tetramethylammonium chloride were equalized, the energy of stacking interaction was significantly diminished.  相似文献   

18.
Discrimination of base mismatches from normal Watson-Crick base pairs in duplex DNA constitutes a key approach to the detection of single nucleotide polymorphisms (SNPs). We have developed a sensor for a surface plasmon resonance (SPR) assay system to detect G-G, A-A, and C-C mismatch duplexes by employing a surface upon which mismatch-binding ligands (MBLs) are immobilized. We synthesized a new MBL consisting of 2,7-diamino-1,8-naphthyridine (damND) and immobilized it onto a CM5 sensor chip to carry out the SPR assay of DNA duplexes containing a single-base mismatch. The SPR sensor with damND revealed strong responses to all C-C mismatches, and sequence-dependent C-T and T-T mismatches. Compared to ND- and naphthyridine-azaquinolone hybrid (NA)-immobilized sensor surfaces, with affinity to mismatches composed of purine nucleotide bases, the damND-immobilized surface was useful for the detection of the mismatches composed of pyrimidine nucleotide bases.  相似文献   

19.
The self-complementary DNA duplex C-C-A-G-G-C-m5C-T-G-G has been refined against 1.75-A x-ray diffraction data to an R value of 17.4%. In the crystal of space group P6, 10-base pair DNA fragments with characteristic sequence-related fine structure stack end to end to form long antiparallel B-type double helices. As shown by a structure analysis at lower resolution (Heinemann, U., and Alings, C. (1991) EMBO J. 10, 35-43), the overall geometry of C-C-A-G-G-C-m5C-T-G-G is similar to that of the unmethylated analog C-C-A-G-G-C-C-T-G-G despite a different crystal environment. The present high resolution structure analysis permits a detailed comparison of the two duplexes and their hydration spheres. Helical parameters are significantly correlated between both molecules, with the exception of the base pair propeller. Sugar pucker and backbone torsion angles alpha, gamma, delta, and chi show similar mean values, but their individual values deviate significantly between duplexes. In contrast, torsion angles beta, epsilon, and zeta change along the strands of both duplexes in much the same way. The effect of single-site methylation on DNA conformation appears to be small and limited to the base pairs directly involved. Methylation tends to push base pairs toward the minor groove of the helix. A regular minor groove hydration pattern involves dual hydrogen bonding of water molecules to O-4' and base atoms of C-C-A-G-G-C-m5C-T-G-G.  相似文献   

20.
yDNA is a base‐modified nucleic acid duplex containing size‐expanded nucleobases. Base‐modified nucleic acids could expand the genetic alphabet and thereby enhance the functional potential of DNA. Unrestrained 100 ns MD simulations were performed in explicit solvent on the yDNA NMR sequence [5′(yA T yA yA T yA T T yA T)2] and two modeled yDNA duplexes, [5′(yC yC G yC yC G G yC G G)2] and [(yT5′ G yT A yC yG C yA yG T3′)?(yA5′ C T C yG C G yT A yC A3′)]. The force field parameters for the yDNA bases were derived in consistent with the well‐established AMBER force field. Our results show that DNA backbone can withstand the stretched size of the bases retaining the Watson‐Crick base pairing in the duplexes. The duplexes retained their double helical structure throughout the simulations accommodating the strain due to expanded bases in the backbone torsion angles, sugar pucker and helical parameters. The effect of the benzo‐expansion is clearly reflected in the extended C1′‐C1′ distances and enlarged groove widths. The size expanded base modification leads to reduction in base pair twist resulting in larger overlapping area between the stacked bases, enhancing inter and intra strand stacking interactions in yDNA in comparison with BDNA. This geometry could favour enhanced interactions with the groove binders and DNA binding proteins., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 55–64, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号