首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effect of high boron application on boron content and growth of melons   总被引:4,自引:0,他引:4  
Synthetic chelates, such as ethylene diamine tetraacetic acid (EDTA), have been shown to enhance phytoextraction of Pb from contaminated soil but also cause leaching of heavy metal-chelate complexes, posing a groundwater contamination threat. In a soil column study, we examined the effect of EDTA and a biodegradable chelate [S,S] isomere of ethylene diamine disuccinate ([S,S]-EDDS), newly introduced in phytoextraction research, on the uptake of Pb by the Chinese cabbage (Brassica rapa) and Pb leaching through the soil profile. Soil water sorption characteristics were modified by acrylamide hydrogel. The addition of 0.1 and 0.2% (w/w) of hydrogel amendments increased soil field water capacity from initial 24.6% to 28.5% and 31.3%, respectively. The additions of 2.5, 5 and 10 mmol EDTA kg–1 soil were more effective in enhancing Pb plant uptake than comparable [S,S]-EDDS treatments, but caused (as also 10 mmol kg–1 [S,S]-EDDS additions) unacceptably high Pb leaching in treatments with any soil water sorption conditions tested. The most efficient level of EDTA (10 mmol kg–1) enhanced plant Pb uptake by 97 times compared to the control. Shoots Pb concentrations reached 500 mg kg–1 of dry biomass. However, in this treatment 36.2% of total initial Pb was leached from the soil during the first four weeks after chelate addition. Hydrogel soil amendments were more effective in treatments with [S,S]-EDDS than with EDTA. In treatments with 10 mmol kg–1[S,S]-EDDS hydrogel amended soils, plant Pb uptake was significantly reduced and Pb leach was as high as 44.2% of total initial soil Pb. At lower [S,S]-EDDS concentrations, the effect of hydrogel soil amendment on Pb leaching was the opposite. The addition of 5 mmol kg–1 [S,S]-EDDS soil to the soil amended with 0.2% hydrogel increased Pb uptake by 18 times while only 0.2% of total initial Pb was leached. In all treatments, the concentrations of Pb in dry plant biomass were far from concentrations required for efficient soil remediation within a reasonable time span.  相似文献   

2.
The concentrations of Cd, Pb, Cu and Zn inChironomus gr.thummi were determined for 4th instar larvae from the polluted Dyle River, tributary of the Scheldt River (Belgium). Comparison was made between larvae with deformed and normal menta. Deformed larvae showed higher overall metal concentrations than normal larvae. Especially Pb and Cu had higher concentrations in deformed larvae (16.22 mg kg–1 dry weight and 39.66 respectively) than in normal larvae (12.80 mg kg–1 dry weight and 35.70 respectively). No significant differences were found in the concentrations of Cd and Zn (mean [Cd] = 0.81 mg kg–1 dry weight and mean [Zn] = 313.12 mg kg–1 dry weight). There was no difference between the two larval groups as far as total length, dry weight and developmental stage of the imaginal discs are concerned.  相似文献   

3.
Individuals of the fairy shrimp, Branchinecta longiantenna, were subjected to 5 concentrations (0.1 to 15 mg l–1) of Pb in diluted habitat water at 13 °C. Lead concentrations (mg kg–1 wet weight) in the animals were determined at 2-day intervals by digestion in nitric acid followed by atomic absorption analysis. The shrimp were also subjected to 0.1 mg l–1 media of Cd and Zn, separately.Uptake rates by the fairy shrimp for the three metal ions at 0.1 mg l–1 were: 0.111, 0.0885, and 0.0460 mg kg–1 day–1 for Zn, Pb, and Cd, respectively. After 2 days in 1.0 mg l–1 Cd or Zn, the animals expired; but they surviced for 8 days in a 10 mg l–1 Pb medium and for 2 days in 25 mg l–1 Pb. Lead uptake demonstrated a linear dependence on the Pb concentration in the media.Shrimp survived at much higher tissue accumulations of Pb compared to Zn and Cd. Estimated lethal doses were 20, 1.2–2.4, and 0.4–1.4 mg kg–1 wet weight for Pb, Zn, and Cd, respectively. Pb was found to be at much lower concentration than Cd or Zn in the natural pond water but between Cd and Zn levels in the sediment. Thus Cd and Zn probably present a greater threat to B. longiantenna than Pb, although Pb may be in higher concentration in the environment.Contribution 47, Laboratory of Ecology, The Claremont Colleges, Claremont, CA 91711, USA. Send reprint requests to Clyde Eriksen.  相似文献   

4.
桂林市龙胜县作为罗汉果的三大主产区之一,种植区土壤重金属含量及罗汉果质量影响到该区罗汉果产业的健康发展.为探索龙胜县丘陵山区典型贫困村罗汉果园的安全性,该文研究了宝赠村典型罗汉果园土壤及罗汉果果实中砷、铜、锌、铅、镉、铬、汞7种重金属含量,并采用Hankanson指数法分析了其潜在生态风险.结果表明:(1)龙胜丘陵山区...  相似文献   

5.
In a pot-soil culture ameliorative effect of sulphur (S) (0 or 40 mg S kg−1 soil) on cadmium (Cd) (0, 25, 50 and 100 mg Cd kg−1 soil)-induced growth inhibition and oxidative stress in mustard (Brassica campestris L.) cultivar Pusa Gold was studied. Cadmium at 100 mg kg−1 soil caused maximum increase in the contents of Cd and thiobarbituric acid reactive substances (TBARS) in leaves. Maximum reductions in growth (plant dry mass, leaf area), chlorophyll content, net photosynthetic rate (PN) and the contents of ascorbate (AsA), glutathione (GSH) were observed with 100 mg Cd kg−1 soil compared to control. The application of S helped in reducing Cd toxicity, which was greater for 25 and 50 mg Cd kg−1 soil) compared to 100 mg Cd kg−1 soil. Addition of S to Cd-treated plants showed decrease in Cd and TBARS content in leaves and restoration of growth and photosynthesis through increase in the contents of AsA and GSH. Net photosynthetic rate and plant dry mass were strongly and positively correlated with the contents of AsA and GSH. It is suggested that S may ameliorate Cd toxicity and protects growth and photosynthesis of mustard involving AsA and GSH.  相似文献   

6.
Grčman  H.  Velikonja-Bolta  Š.  Vodnik  D.  Kos  B.  Leštan  D. 《Plant and Soil》2001,235(1):105-114
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg–1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg–1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.  相似文献   

7.
Four bacterial isolates were examined for their ability to increase the availability of water soluble Cu, Cr, Pb and Zn in soils and for their effect on metals uptake by Zea mays and Sorghum bicolor. Random Amplified Polymorphic DNA (RAPD) analysis was used to show that the bacterial cultures were genetically diverse. Bacterial isolates S3, S28, S22 and S29 had 16S rRNA gene sequences that were most similar to Bacillus subtilis, Bacillus pumilus, Pseudomonas pseudoalcaligenes and Brevibacterium halotolerans based on 100% similarity in their 16S rDNA gene sequence, respectively. Filtrate liquid media that had supported B. pumilus and B. subtilis growth significantly increased Cr and Cu extraction from soil polluted with tannery effluent and from Cu-rich soil, respectively, compared to axenic media. The highest concentrations of Pb (0.2 g kg−1), Zn (4 g kg−1) and Cu (2 g kg−1) were accumulated in shoots of Z. mays grown on Cu-rich soil inoculated with Br. halotolerans. The highest concentration of Cr (5 g kg−1) was accumulated in S. bicolor roots grown in tannery-effluent-polluted soil inoculated with a mixed inoculum of bacterial strains. These results show that bacteria play an important role in increasing metal availability in soil, thus enhancing Cr, Pb, Zn and Cu accumulation by Z. mays and S. bicolor.  相似文献   

8.
Summary This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria,Rhizobium leguminosarum bv.trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg–1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg–1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb.Rhizobium leguminosarum bv.trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg–1): 130–200 Zn, 27–48 Cu, 11–15 Ni, and 0.8–1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surpringly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.  相似文献   

9.
Three-year-old spruce (Picea abies) saplings were planted and cultivated for 2 years in pots with 3 1 substrate, consisting of a homogenized mixture of sand, peat and forest soil with a high organic content (volume ratio 11.52). This substrate was amended with 10–180 mol Cd [kg soil dry weight (DW)]–1, 50–7500 mol Zn (kg soil DW)–1 (determined with 1 M ammonium acetate extracts) or combinations of both elements. Annual xylem growth rings in stems of plants treated with 50 mol Cd (kg soil DW)–1 or 7500 mol Zn (kg soil DW)–1 were significantly narrower than in control plants. Growth reductions were more pronounced in the second year of the experiment. The contents of Cd and Zn in stem wood and needles were positively correlated with the substrate concentrations. The Mg contents of the spruce needles were inversely correlated with soil concentrations of Cd and Zn. Root development was impeded at moderate concentrations of Cd (50 mol kg–1) or Zn (1000 mol kg–1) in the substrate. The adverse effects of potentially toxic trace elements, like Cd or Zn, on xylem growth of spruce plants are discussed with regard to possible growth reductions in forest trees under field conditions.  相似文献   

10.
G. Nakos 《Plant and Soil》1982,66(2):271-277
Summary The Thriasian Plain near Athens in Greece is a site of concentrated industrial development. Total concentrations of Pb, Cd and extractable SO4 2– in surface soil samples collected from this area, were found to be, respectively, 2–7, 6–34 and 2–20 times higher than those in similar soil samples from parts of the country remote from industrial activity.Total concentrations of Pb, Cd, Zn, Cr and S in samples of olive leaves from the same area were found to be, respectively, 4–40, 3–10, 3–9, 2–6 and 17–21 times higher than those found in samples of olive leaves from rural sites. Leaves of cabbages growing in the area contained between 0.82 and 40 g/g (wet weight) of Pb.Addition of Cd, Ni and Cu to a calcareous potted soil at concentrations of 100, 200 and 200 ppm increased the concentrations of the metals in the needles of Aleppo pine (Pinus halepensis) seedlings to 4.5, 3.5 and 10 ppm, respectively, after 7 months growth in the nursey.  相似文献   

11.
Willows occur as volunteer vegetation on sediment-derived soils, such as dredged sediments, landfill cover or stockpile deposits, and are used as phytoremediators on such soils. The present study evaluates growth and metal uptake by Salix alba grown on a contaminated dredge sediment for 209 days under greenhouse conditions. At the end of the study, the aerial parts of the S. alba plants had grown to heights of between 80 and 117 cm. Biomass and Cd and Zn concentration in the roots, stems and leaves, at 70, 112 and 209 days, showed that Cd and Zn had been bioaccumulated, especially in the leaves.At the three sampling dates, Cd and Zn extractability and pH measurements were also carried out on samples of two soil layers (0–15 and 15–30 cm) from both the planted and the control pots. Cd and Zn extractability were assessed using single extraction procedures (0.01 M CaCl2; 1 M HNO3; CaCl2–TEA–DTPA). The two metals showed similar variations in CaCl2 and HNO3 extractabilities, but this was not the case for DTPA extractability. The greatest variations were observed in the upper soil layers of the control pots. In the planted pots, the CaCl2 extractability of Zn decreased in the upper layer, and the HNO3 extractability of Zn increased in the lower layer. The pH of the upper soil layer was always higher than the pH of the bottom layer. In addition, we monitored several parameters of the percolates from both the planted and the control sediments, including pH, Eh, conductivity, dissolved organic carbon, Zn and Cd concentrations, and presence of certain cations/anions. Dissolved organic carbon, and Cd and Zn concentrations increased steadily over time. There were no significant differences between the planted and the control pots. After 209 days, the characteristics of the control sediment reflected the effects of ageing in that the CaCl2-extractable Cd and Zn concentrations had decreased compared with the initial concentrations. Conversely, the concentrations of HNO3-extractable Cd and Zn had increased. A fraction of the metal initially extracted by CaCl2 (considered as exchangeable) became less available with time. After 112 days, the plants had extracted approximately 2.8 mg of Zn. At the same time, the CaCl2 extractability of Zn in the upper, rooted layer decreased by 2.6 mg. We can assume that S. alba extracted Zn from the pool of CaCl2-extractable Zn.  相似文献   

12.
Kim  C.-G.  Bell  J. N. B.  Power  S. A. 《Plant and Soil》2003,257(2):443-449
The effects of Cd on the growth and distribution of Cd and mineral nutrients within plant tissues were investigated for Pinus sylvestris L. seedlings grown in mineral forest soil with increasing levels of Cd addition (0–100 mg kg–1). Approximately 20% of added Cd was found to be extractable from sandy loam forest soil. Root growth was less affected by Cd than shoot growth, which showed a significant reduction in the 100 mg Cd kg–1 treatment. Cadmium accumulated in roots up to 325 mg kg–1. Decreased concentrations of K in needles and Ca in stems with increasing Cd levels suggest a disturbance of mineral nutrition as a result of Cd addition.  相似文献   

13.

The use of plants in treatments has been as old as humanity and it has preserved its popularity for centuries til now because of their availability, affordability and safeness. However, despite their widespread use, safety and quality issues have been major concerns in the world due to industrial- and anthropogenic-based heavy metal contamination risks. Thus, this study was attempted to analyze the heavy metal levels and mineral nutrient status of widely used medicinal plants in Turkey to have insights about their health implications on humans. The plant concentrations of B, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn were analyzed by ICP-OES in the leaves of 44 medical plants purchased from herbal markets of three different districts of Istanbul/Turkey. The measured lowest to highest concentrations were 0.065–79.749 mg kg−1 B, 921.802–12,854.410 mg kg−1 Ca, 0.020–0.558 mg kg−1 Cd, 0.015–4.978 mg kg−1 Cr, 0.042–8.489 mg kg−1 Cu, 34.356–858.446 mg kg−1 Fe, 791.323–15,569.349 mg kg−1 K, 102.236–2837.836 mg kg−1 Mg, 4.915–91.519 mg kg−1 Mn, 10.224–3213.703 mg kg−1 Na, 0.001–5.589 mg kg−1 Ni, 0.003–3.636 mg kg−1 Pb and 2.601–36.102 mg kg−1 Zn. Those levels in plants were in acceptable limits though some elements in some plants have high limits which were not harmful. Variations (above acceptable limits) in element concentrations also indicated that these plants could be contaminated with other metals and that genetic variations may influence accumulation of these elements at different contents. Overall, analyzed medicinal plants are expected not to pose any serious threat to human health.

  相似文献   

14.
Kidd  P.S.  Díez  J.  Monterroso Martínez  C. 《Plant and Soil》2004,258(1):189-205
The effects of heavy metals on the growth, mineral composition (P, K, Fe and Mn) and metal accumulation of five populations of Cistus ladanifer subsp. ladanifer from NE Portugal were investigated in hydroponic experiments. Plants were exposed to increasing concentrations (0–2000 M) of one of eight heavy metals: Cd, Co, Cr, Cu, Mn, Ni, Pb or Zn. Populations of C. ladanifer, whose origin was ultramafic soils (S and UB) or soils developed on basic rocks (B), showed a higher tolerance to the metals Cd, Co, Cr, and Mn, and a considerable degree of tolerance to Ni. In contrast, populations originating on acid-rock soils (M and SC) showed higher tolerance to the metals Cu and Zn. Populations showed different patterns of metal accumulation and distribution in the plant parts, suggesting different mechanisms of metal tolerance are used. The more Cd-, Co- and Mn-tolerant populations (S, UB, B and SC (Cd)) showed accumulation of these three metals in the shoots (shoot:root metal concentration ratios (S:R) > 1). Shoot concentrations of up to 309 g Cd g–1, 2667 g Co g–1 and 6214 g Mn g–1 were found in these populations. The populations, UB and M, showed considerable tolerance to Ni and Zn, respectively. These populations accumulated up to 4164 g Ni g–1 and 7695 g Zn g–1 in their shoot tissues, and these metals were efficiently transported from the roots to aerial parts (S:R > 3 (Ni), S:R > 1 (Zn)). In contrast, the S and SC populations maintained higher growth rates in the presence of Ni and Zn, respectively, but showed exclusion mechanisms of metal tolerance: reduced Ni and Zn transport to shoots (S:R < 1). Cistus ladanifer was not able to efficiently transport Cr, Cu or Pb from its roots to its aerial parts (S:R ranged from 0–0.4). The more Cu-tolerant populations, M and SC, showed a greater restriction of Cu transport to the shoots than the ultramafic- or basic-rock populations. Significant changes in the plant mineral composition were found, however, concentrations were generally above mineral deficiency levels. Based on these preliminary results the possible usefulness of this plant for phytoremediation technologies is discussed. However, further investigations are necessary to evaluate its growth and metal accumulation under soil and field conditions.  相似文献   

15.
Abstract

Column leaching using [S, S]-ethylene diamine disuccinate ([S, S]-EDDS) on copper tailing soils was carried out to investigate metal content and fractionation after leaching. The soil column was divided into four layers after leaching. Fractionation of Cu, Pb, Zn, and Mn in soil was analyzed using a modified BCR sequential extraction method. Metal contents (Cu, Pb, Ca, Mn) in soil layers increased with the depth of the soil column after leaching in the [S, S]-EDDS treatment. The cumulative extraction efficiency was approximately 43.1% for Cu, 26.8% for Zn, 19.5% for Pb, 10.5% for Ca, 2.07% for Mg, 58.5% for Mn, and 7.92% for Fe. The removal of the reducible fractions of Cu and Mn and the exchangeable fraction of Zn was the most significant in the treatment with [S, S]-EDDS. The exchangeable fraction of Pb was the main fraction that was affected by leaching using [S, S]-EDDS. Distribution of Cu and Mn were severely modified by leaching with [S, S]-EDDS. Percentages of residual fractions of the tested heavy metals in the treatment with [S, S]-EDDS after leaching were much higher than that in the control. Although column leaching using [S, S]-EDDS could remove target metals effectively and impaired their availability, it also dissolved large amounts of major elements and modified the distribution of Mn appreciably.  相似文献   

16.
Contamination of agricultural topsoils with Cd above guideline values is of concern in many countries throughout the world. Extraction of metals from contaminated soils using high-biomass, metal-accumulating Salix sp. has been proposed as a low-cost, gentle remediation strategy, but reasonable phytoextraction rates remain to be demonstrated. In an outdoor pot experiment we assessed the phytoextraction potential for Cd and Zn of four willow species (Salix caprea, S. fragilis, S. × smithiana, S. × dasyclados) and intercropping of S. caprea with the hyperaccumulator Arabidopsis halleri on three moderately contaminated, agricultural soils. Large concentrations of Cd (250 mg kg−1) and Zn (3,300 mg kg−1) were determined in leaves of Salix × smithiana grown on a soil containing 13.4 mg kg−1 Cd and 955 mg kg−1 Zn, resulting in bioaccumulation factors of 27 (Cd) and 3 (Zn). Total removal of up to 20% Cd and 5% Zn after three vegetation periods were shown for Salix × smithiana closely followed by S. caprea, S. fragilis and S. × dasyclados. While total Cd concentrations in soils were reduced by up to 20%, 1 M NH4NO3-extractable metal concentrations did not significantly decrease within 3 years. Intercropping of S. caprea and A. halleri partly increased total removal of Zn, but did not enhance total Cd extraction compared to single plantings of S. caprea after two vegetation periods.  相似文献   

17.
Silicate (Si) can enhance plant resistance or tolerance to the toxicity of heavy metals. However, it remains unclear whether Si can ameliorate lead (Pb) toxicity in banana (Musa xparadisiaca) roots. In this study, treatment with 800 mg kg−1 Pb decreased both the shoot and root weight of banana seedlings. The amendment of 800 mg kg−1 Si (sodium metasilicate, Na2SiO3·9H2O) to the Pb-contaminated soil enhanced banana biomass at two growth stages significantly. The amendment of 800 mg kg−1 Si significantly increased soil pH and decreased exchangeable Pb, thus reducing soil Pb availability, while Si addition of 100 mg kg−1 did not influence soil pH. Results from Pb fractionation analysis indicated that more Pb were in the form of carbonate and residual-bound fractions in the Si-amended Pb-contaminated soils. The ratio of Pb-bound carbonate to the total Pb tended to increase with increasing growth stages. Treatment with 100 mg kg−1 Si had smaller effects on Pb forms in the Si-amended soils than that of 800 mg kg−1 Si. Pb treatment decreased the xylem sap greatly, but the addition of Si at both levels increased xylem sap and reduced Pb concentration in xylem sap significantly in the Si-amended Pb treatments. The addition of Si increased the activities of POD, SOD, and CAT in banana roots by 14.2% to 72.1% in the Si-amended Pb treatments. The results suggested that Si-enhanced tolerance to Pb toxicity in banana seedlings was associated with Pb immobilization in the soils, the decrease of Pb transport from roots to shoots, and Si-mediated detoxification of Pb in the plants.  相似文献   

18.
From 2000 to 2002, sediment contamination by Cd, Cu, Hg, Pb and Zn was analysed in the Pialassa Baiona salt marsh, which receives petrochemical wastewaters from the industrial district of Ravenna (Italy). The recent contamination levels were compared with data of previous studies carried out in 1982, in order to assess whether environmental policies and remedial measures reduced sediment pollution. Sedimentary profiles of Cu and Pb were homogeneous along the uppermost 0–10 cm horizon, which corresponded to the sedimentation in the last 30 years. Concentrations of Zn attained a peak (up to 800 mg kg−1 dry weight) in the 0–4 cm sediment horizon, which was assumed to correspond to the last 10–15 years. A wide-spread contamination by Hg was detected in the salt marsh as well as in the main channel with peaks up to 20–40 mg kg−1 dry weight. Nonetheless, recent sediments resulted less contaminated, since Hg discharge from industrial plants ceased about 20 years ago. Contamination levels by Hg values were two orders of magnitude higher than the international sediment quality standards. Cadmium, which was analysed for the first time in 2000–2002, attained a peak in the surface layers (1–2.5 mg kg−1 d.w.), with a progressive decline along the sediment column. Through comparison with pre-industrial values detected in the deeper sediment horizons (before 1920), Hg showed the highest enrichment factor, up to 300 times. Cd and Zn concentrations in recent sediments were from 2 to 10 times higher than background values. In terms of possible adverse effects, Hg posed the highest risk, and Cd and Zn were frequently above the recommended thresholds.  相似文献   

19.
A field growth chamber study was conducted to determine the effects of ozone and simulated acid rain (SAR) on soil heavy metals. Loblolly pine (Pinus taeda L.), grown in open-top chambers, was exposed to three concentrations of ozone (charcoal filtered air with 0.026 µL O3 L-1, and two non-filtered treatments in which ozone concentrations were 0.074 µL L-1 and 0.147 µL L-1, respectively) and two levels of SAR (pH 3.5 and 5.2). Ozone was applied for 12 h d-1 for 9 months and acid rain deposition was 125 mm event-1. After 9 months exposure, soil pH, organic matter and DTPA-extractable heavy metals (Cd, Pb, Zn, Mn, Fe, Cu) were determined on soil samples collected from exposed chambers at two depths (0–15 cm and 15–30 cm). Simulated acid rain decreased the original soil pH. The concentrations of Cd, Pb and Mn at SAR pH 3.5 were significantly higher than at SAR pH 5.2. Ozone did not affect Zn, Fe and Cu, but a significant interaction between pH and O3 on Mn, Pb and Cd was observed. Due to the poor drainage capacity of this soil, leaching of heavy metals was not observed.  相似文献   

20.
During 2000–2002, diagnostic rice and soybean plant samples and concurrent soil samples were collected from cultivated fields within a geo-physically unique Zn/Cd co-contaminated location in Thailand. For the fields sampled, aqua regia-digested Zn and Cd concentrations ranged from 2.91–284 and 254–8036 mg kg–1, respectively. In comparison, rice and soybean Cd concentrations ranged from 0.02–5.00 and 1.08–1.71 mg kg–1, respectively. Further, the results indicate that grain Cd, Zn and Fe concentrations are in the order riceGr=soybeanGr, soybeanGr>riceGr, soybeanGr>riceGr, respectively. However, and critically from a human health perspective, Cd:Zn and Cd:Fe ratios are in the order riceGr>soybeanGr. In addition, the riceGr Cd:Fe ratio is an order of magnitude higher than that determined for soybeanGr. The results of this study, clearly demonstrate that compared to rice stalk (riceSt) and rice leaf (riceL), riceGr accumulates comparatively higher Cd than Zn and Fe thus resulting in the high riceGr Cd:Zn and Cd:Fe ratios. This is in direct contrast to the results observed for soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号