首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Like the translational elongation factor EF-Tu, RNase P interacts with a large number of substrates where RNase P with its RNA subunit generates tRNAs with matured 5′ termini by cleaving tRNA precursors immediately 5′ of the residue at +1, i.e. at the position that corresponds to the first residue in tRNA. Most tRNAs carry a G+1C+72 base pair at the end of the aminoacyl acceptor-stem whereas in tRNAGln G+1C+72 is replaced with U+1A+72. Here, we investigated RNase P RNA-mediated cleavage as a function of having G+1C+72 versus U+1A+72 in various substrate backgrounds, two full-size tRNA precursors (pre-tRNAGln and pre-tRNATyrSu3) and a model RNA hairpin substrate (pATSer). Our data showed that replacement of G+1C+72 with U+1A+72 influenced ground state binding, cleavage efficiency under multiple and single turnover conditions in a substrate-dependent manner. Interestingly, we observed differences both in ground state binding and rate of cleavage comparing two full-size tRNA precursors, pre-tRNAGln and pre-tRNATyrSu3. These findings provide evidence for substrate discrimination in RNase P RNA-mediated cleavage both at the level of binding, as previously observed for EF-Tu, as well as at the catalytic step. In our experiments where we used model substrate derivatives further indicated the importance of the +1/+72 base pair in substrate discrimination by RNase P RNA. Finally, we provide evidence that the structural architecture influences Mg2+ binding, most likely in its vicinity.  相似文献   

3.
To monitor functionally important metal ions and possible cross talk in RNase P RNA mediated cleavage we studied cleavage of substrates, where the 2′OH at the RNase P cleavage site (at −1) and/or at position +73 had been replaced with a 2′ amino group (or 2′H). Our data showed that the presence of 2′ modifications at these positions affected cleavage site recognition, ground state binding of substrate and/or rate of cleavage. Cleavage of 2′ amino substituted substrates at different pH showed that substitution of Mg2+ by Mn2+ (or Ca2+), identity of residues at and near the cleavage site, and addition of C5 protein influenced the frequency of miscleavage at −1 (cleavage at the correct site is referred to as +1). From this we infer that these findings point at effects mediated by protonation/deprotonation of the 2′ amino group, i.e. an altered charge distribution, at the site of cleavage. Moreover, our data suggested that the structural architecture of the interaction between the 3′ end of the substrate and RNase P RNA influence the charge distribution at the cleavage site as well as the rate of cleavage under conditions where the chemistry is suggested to be rate limiting. Thus, these data provide evidence for cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. We discuss the role metal ions might play in this cross talk and the likelihood that at least one functionally important metal ion is positioned in the vicinity of, and use the 2′OH at the cleavage site as an inner or outer sphere ligand.  相似文献   

4.
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nuclear RNase P has been shown to possess unique RNA binding capabilities. To understand the unique molecular recognition of nuclear RNase P, the interaction of S. cerevisiae RNase P with single-stranded RNA was characterized. Unstructured, single-stranded RNA inhibits RNase P in a size-dependent manner, suggesting that multiple interactions are required for high affinity binding. Mixed-sequence RNAs from protein-coding regions also bind strongly to the RNase P holoenzyme. However, in contrast to poly(U) homopolymer RNA that is not cleaved, a variety of mixed-sequence RNAs have multiple preferential cleavage sites that do not correspond to identifiable consensus structures or sequences. In addition, pre-tRNA(Tyr), poly(U)(50) RNA, and mixed-sequence RNA cross-link with purified RNase P in the RNA subunit Rpr1 near the active site in "Conserved Region I," although the exact positions vary. Additional contacts between poly(U)(50) and the RNase P proteins Rpr2p and Pop4p were identified. We conclude that unstructured RNAs interact with multiple protein and RNA contacts near the RNase P RNA active site, but that cleavage depends on the nature of interaction with the active site.  相似文献   

5.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

6.
7.
The RNase P cleavage reaction was studied as a function of the number of base-pairs in the acceptor-stem and/or T-stem of a natural tRNA precursor, the tRNA(Tyr)Su3 precursor. Our data suggest that the location of the Escherichia coli RNase P cleavage site does not depend merely on the lengths of the acceptor-stem and T-stem as previously suggested. Surprisingly, we find that precursors with only four base-pairs in the acceptor-stem are cleaved by M1 RNA and by holoenzyme. Furthermore, we show that both disruption of base-pairing, and alteration of the nucleotide sequence (without disruption of base-pairing) proximal to the cleavage site result in aberrant cleavage. Thus, the identity of the nucleotides near the cleavage site is important for recognition of the cleavage site rather than base-pairing. The important nucleotides are those at positions -2, -1, +1, +72, +73 and +74. We propose that the nucleotide at position +1 functions as a guiding nucleotide. These results raise the possibility that Mg2+ binding near the cleavage site is dependent on the identity of the nucleotides at these positions. In addition, we show that disruption of base-pairing in the acceptor-stem affects both Michaelis-Menten constants, Km and kcat.  相似文献   

8.
9.
10.
11.
RNase P mediated cleavage of the tRNA(His) precursor does not rely on the formation of the "+73/294 interaction" to give the correct cleavage product, i.e. cleavage at -1, while other tRNA precursors that are cleaved at the canonical site +1 do. A previous model, here referred to as the "2'OH-model", predicts that the 2'OH at the canonical cleavage site would affect cleavage at -1. Here we used model RNA hairpin substrates mimicking the structural architecture of the tRNA(His) precursor cleavage site to investigate the role of 2'OH with respect to ground state binding and rate of cleavage in the presence and absence of the +73/294 interaction. Our data emphasize the importance of the 2'OH in the immediate vicinity of the scissile bond. Moreover, introduction of 2'H at the cleavage site did not affect cleavage at an alternative cleavage site to any significant extent. Our findings are therefore inconsistent with the 2'OH model. We favor a model where the 2'OH at the cleavage site influence Mg2+ binding in its vicinity, however we do not exclude the possibility that the 2'OH at the cleavage site interacts with RNase P RNA. Studying the importance of the 2'OH at different cleavage sites also indicated a higher dependence on the 2'OH at the cleavage site in the absence of the +73/294 interaction than in its presence. Finally, we provide data suggesting that N3 of U at position -1 in the substrate is most likely not involved in an interaction with RNase P RNA.  相似文献   

12.
Experiments were conducted to investigate structural features of the aminoacyl stem region of precursor histidine tRNA critical for the proper cleavage by the catalytic RNA component of RNase P that is responsible for 5' maturation. Histidine tRNA was chosen for study because tRNAHis has an 8 base pair instead of the typical 7-base pair aminoacyl stem. The importance of the 3' proximal CCA sequence in the 5'-processing reaction was also investigated. Our results show that the tRNAHis precursor patterned after the natural Bacillus subtilis gene is cleaved by catalytic RNAs from B. subtilis or Escherichia coli, leaving an extra G residue at the 5'-end of the aminoacyl stem. Replacing the 3' proximal CCA sequence in the substrate still allowed the catalytic RNA to cleave at the proper position, but it increased the Km of the reaction. Changing the sequence of the 3' leader region to increase the length of the aminoacyl stem did not alter the cleavage site but reduced the reaction rate. However, replacing the G residue at the expected 5' mature end by an A changed the processing site, resulting in the creation of a 7-base pair aminoacyl stem. The Km of this reaction was not substantially altered. These experiments indicate that the extra 5' G residue in B. subtilis tRNAHis is left on by RNase P processing because of the precursor's structure at the aminoacyl stem and that the cleavage site can be altered by a single base change. We have also shown that the catalytic RNA alone from either B. subtilis or E. coli is capable of cleaving a precursor tRNA in which the 3' proximal CCA sequence is replaced by other nucleotides.  相似文献   

13.
Slow folding kinetics of RNase P RNA.   总被引:4,自引:2,他引:2       下载免费PDF全文
Understanding the folding mechanisms of large, highly structured RNAs is important for understanding how these molecules carry out their function. Although models for the three-dimensional architecture of several large RNAs have been constructed, the process by which these structures are formed is only now beginning to be explored. The kinetic folding pathway of the Tetrahymena ribozyme involves multiple intermediates and both Mg2+-dependent and Mg2+-independent steps. To determine whether this general mechanism is representative of folding of other large RNAs, a study of RNase P RNA folding was undertaken. We show, using a kinetic oligonucleotide hybridization assay, that there is at least one slow step on the folding pathway of RNase P RNA, resulting in conformational changes in the P7 helix region on the minute timescale. Although this folding event requires the presence of Mg2+, the slow step itself does not involve Mg2+ binding. The P7 and P2 helix regions exhibit distinctly different folding behavior and ion dependence, implying that RNase P folding is likely to be a complex process. Furthermore, there are distinct similarities in the folding of RNase P RNA from both Bacillus subtilis and Escherichia coli, indicating that the folding pathway may also be conserved along with the final structure. The slow folding kinetics, Mg2+-independence of the rate, and existence of intermediates are basic features of the folding mechanism of the Tetrahymena group I intron that are also found in RNase P RNA, suggesting these may be general features of the folding of large RNAs.  相似文献   

14.
15.
The endoribonuclease RNase P processes tRNA-like structures that are assembled out of two separate strands. In these bimolecular constructs, one of the strands is cleaved by the enzyme, and the other one is called the external guide sequence (EGS). A number of EGS with different mutations and deletions were tested for the ability to induce cleavage with human RNase P. Different domains of the original tRNAtyr-like structure were deleted or modified. The anticodon stem and loop and the variable loop could be deleted without a detrimental effect on recognition by RNase P. Modifications in the lengths of T stem and aminoacyl acceptor stem led to a decrease in the relative amount of cleavage, whereas modifications of the D stem were more permissible. Single nucleotide deletions in the T loop reduced cleavage to different extents, depending on the position. Values for the Kd of complex formation of bimolecular constructs with annealing arms of varying lengths ranged from 0.2 nM to 28 nM. A cleavage rate of 1 min(-1) was measured for both the bimolecular target-EGS complex and tRNA precursor.  相似文献   

16.
There are at least six small stable RNAs inMycoplasma capricolum cells besides tRNAs and rRNAs. One of them, MCS5 RNA, is a homolog of RNase P RNA. The predicted secondary structure of this RNA is essentially the same as that of other eubacterial RNase P RNAs. MCS5 RNA is more similar to the RNase P RNA ofB. subtilis than to that ofE. coli. This is consistent with previous conclusions that mycoplasmas are phylogenetically related to the low G+C Gram-positive bacterial group. The major substrates for MCS5 RNA must be the precursors of tRNAs. The precursor of MCS6 RNA, which is a homolog of theE. coli 10Sa RNA, may also be a substrate for the MCS5 RNA because this RNA has a tRNA-like structure at its 5 and 3 ends.  相似文献   

17.
18.
Although helix P4 in the catalytic domain of the RNase P ribozyme is known to coordinate magnesium ions important for activity, distinguishing between direct and indirect roles in catalysis has been difficult. Here, we provide evidence for an indirect role in catalysis by showing that while the universally conserved bulge of helix P4 is positioned 5 nt downstream of the cleavage site, changes in its structure can still purturb active site metal binding. Because changes in helix P4 also appear to alter its position relative to the pre-tRNA cleavage site, these data suggest that P4 contributes to catalytic metal ion binding through substrate positioning.  相似文献   

19.
20.
Rescue of the RNA phage genome from RNase III cleavage.   总被引:3,自引:1,他引:2       下载免费PDF全文
The secondary structure of the RNA from the single-stranded RNA bacteriophages, like MS2 and Qb, has evolved to serve a variety of functions such as controlling gene expression, exposing binding sites for the replicase and capsid proteins, allowing strand separation and so forth. On the other hand, all of these foldings have to perform in bacterial cells in which various RNA splitting enzymes are present. We therefore examined whether phage RNA structure is under selective pressure by host RNases. Here we show this to be true for RNase III. A fully double-stranded hairpin of 17 bp, which is an RNase III target, was inserted into a non-coding region of the MS2 RNA genome. In an RNase III-host these phages survived but in wild-type bacteria they did not. Here the stem underwent Darwinian evolution to a structure that was no longer a substrate for RNase III. This was achieved in three different ways: (i) the perfect stem was maintained but shortened by removing all or most of the insert; (ii) the stem acquired suppressor mutations that replaced Watson-Crick base pairs by mismatches; (iii) the stem acquired small deletions or insertions that created bulges. These insertions consist of short stretches of non-templated A or U residues. Their origin is ascribed to polyadenylation at the site of the RNase III cut (in the + or - strand) either by Escherichia coli poly(A) polymerase or by idling MS2 replicase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号