首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In rice seedlings, elongation of leaf sheaths is suppressed by light stimuli. The response is mediated by two classes of photoreceptors, phytochromes and cryptochromes. However, it remains unclear how these photoreceptors interact in the process. Our recent study using phytochrome mutants and novel cryptochrome RNAi lines revealed that cryptochromes and phytochromes function cooperatively, but independently to reduce active GA contents in seedlings in visible light. Blue light captured by cryptochrome 1 (cry1a and cry1b) induces robust expression of GA 2-oxidase genes (OsGA2ox4-7). In parallel, phytochrome B with auxiliary action of phytochrome A mediates repression of GA 20-oxidase genes (OsGA20ox2 and OsGA20ox4). The independent effects cumulatively reduce active GA contents, leading to a suppression of leaf sheath elongation. These regulatory mechanisms are distinct from phytochrome B function in dicots. We discuss reasons why the distinct system appeared in rice, and advantages of the rice system in early photomorphogenesis.  相似文献   

2.
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA(4) in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA(4) content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs.  相似文献   

3.
To identify where gibberellin (GA) biosynthesis and signaling occur, we analyzed the expression of four genes involved in GA biosynthesis, GA 20-oxidase1 and GA 20-oxidase2 (OsGA20ox1 and OsGA20ox2), and GA 3-oxidase1 and GA 3-oxidase2 (OsGA3ox1 and OsGA3ox2), and two genes involved in GA signaling, namely, the gene encoding the alpha-subunit of the heterotrimeric GTP-binding protein (Galpha), and SLENDER RICE1 (SLR1), which encodes a repressor of GA signaling. At the vegetative stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was observed in rapidly elongating or dividing organs and tissues, whereas the expression of OsGA20ox1 or OsGA3ox1 could not be detected. At the inflorescence or floral stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was also observed in the shoot meristems and stamen primordia. The overlapping expression of genes for GA biosynthesis and signaling indicates that in these tissues and organs, active GA biosynthesis occurs at the same site as does GA signaling. In contrast, no GA-biosynthesis genes were expressed in the aleurone cells of the endosperm; however, the two GA-signaling genes were actively expressed, indicating that the aleurone does not produce bioactive GAs, but can perceive GAs. The expression of OsGA20ox1 and OsGA3ox1 was observed only in the epithelium of the embryo and the tapetum of the anther. Based on the specific expression pattern of OsGA20ox1 and OsGA3ox1 in these tissues, we discuss the unique nature of the epithelium and the tapetum in terms of GA biosynthesis. The epithelium and the tapetum are considered to be an important source of bioactive GAs for aleurone and other organs of the flower, respectively.  相似文献   

4.
We have cloned two genes for gibberellin (GA) 2-oxidase from rice (Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA1 to GA8 and GA20 to GA29-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice. Electronic Publication  相似文献   

5.
A major catabolic pathway for gibberellin (GA) is initiated by 2beta-hydroxylation, a reaction catalyzed by GA 2-oxidase. We have isolated and characterized a cDNA, designated Oryza sativa GA 2-oxidase 1 (OsGA2ox1) from rice (Oryza sativa L. cv Nipponbare) that encodes a GA 2-oxidase. The encoded protein, produced by heterologous expression in Escherichia coli, converted GA(1), GA(4), GA(9), GA(20), and GA(44) to the corresponding 2beta-hydroxylated products GA(8), GA(34), GA(51), GA(29), and GA(98), respectively. Ectopic expression of the OsGA2ox1 cDNA in transgenic rice inhibited stem elongation and the development of reproductive organs. These transgenic plants were deficient in endogenous GA(1). These results indicate that OsGA2ox1 encodes a GA 2-oxidase, which is functional not only in vitro but also in vivo. OsGA2ox1 was expressed in shoot apex and roots but not in leaves and stems. In situ hybridization analysis revealed that OsGA2ox1 mRNA was localized in a ring at the basal region of leaf primordia and young leaves. This ring-shaped expression around the shoot apex was drastically decreased after the phase transition from vegetative to reproductive growth. It was absent in the floral meristem, but it was still present in the lateral meristem that remained in the vegetative phase. These observations suggest that OsGA2ox1 controls the level of bioactive GAs in the shoot apical meristem; therefore, reduction in its expression may contribute to the early development of the inflorescence meristem.  相似文献   

6.
Genetic manipulation of gibberellin metabolism in transgenic rice   总被引:16,自引:0,他引:16  
The 'green revolution' was fueled by the introduction of the semi-dwarf trait into cereal crop cultivars. The semi-dwarf cultivars--which respond abnormally to the plant growth hormone gibberellin (GA)--are more resistant to wind and rain damage and thus yield more grain when fertilized. To generate dwarf rice plants using a biotechnological approach, we modified the level of GA by overproduction of a GA catabolic enzyme, GA 2-oxidase. When the gene encoding GA 2-oxidase, OsGA2ox1, was constitutively expressed by the actin promoter, transgenic rice showed severe dwarfism but failed to set grain because GA is involved in both shoot elongation and reproductive development. In contrast, OsGA2ox1 ectopic expression at the site of bioactive GA synthesis in shoots under the control of the promoter of a GA biosynthesis gene, OsGA3ox2 (D18), resulted in a semi-dwarf phenotype that is normal in flowering and grain development. The stability and inheritance of these traits shows the feasibility of genetic improvement of cereal crops by modulation of GA catabolism and bioactive GA content.  相似文献   

7.
Gibberellins are phytohormones that regulate growth and development of plants. Gibberellin homeostasis is maintained by feedback regulation of gibberellin metabolism genes. To understand this regulation, we manipulated the gibberellin pathway in tobacco and studied its effects on the morphological phenotype, gibberellin levels and the expression of endogenous gibberellin metabolism genes. The overexpression of a gibberellin 3-oxidase (biosynthesis gene) in tobacco (3ox-OE) induced slight variations in phenotype and active GA(1) levels, but we also found an increase in GA(8) levels (GA(1) inactivation product) and a conspicuous induction of gibberellin 2-oxidases (catabolism genes; NtGA2ox3 and -5), suggesting an important role for these particular genes in the control of gibberellin homeostasis. The effect of simultaneous overexpression of two biosynthesis genes, a gibberellin 3-oxidase and a gibberellin 20-oxidase (20ox/3ox-OE), on phenotype and gibberellin content suggests that gibberellin 3-oxidases are non-limiting enzymes in tobacco, even in a 20ox-OE background. Moreover, the expression analysis of gibberellin metabolism genes in transgenic plants (3ox-OE, 20ox-OE and hybrid 3ox/20ox-OE), and in response to application of different GA(1) concentrations, showed genes with different gibberellin sensitivity. Gibberellin biosynthesis genes (NtGA20ox1 and NtGA3ox1) are negatively feedback regulated mainly by high gibberellin levels. In contrast, gibberellin catabolism genes which are subject to positive feedback regulation are sensitive to high (NtGA2ox1) or to low (NtGA2ox3 and -5) gibberellin concentrations. These two last GA2ox genes seem to play a predominant role in gibberellin homeostasis under mild gibberellin variations, but not under large gibberellin changes, where the biosynthesis genes GA20ox and GA3ox may be more important.  相似文献   

8.
We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3beta-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909-8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3beta-hydroxylase genes and also an alpha-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and alpha-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3beta-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3beta-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for alpha-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for alpha-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced alpha-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not.  相似文献   

9.
10.
Flowering of Nicotiana tabacum cv Xhanti depends on gibberellins because gibberellin-deficient plants, due to overexpression of a gibberellin 2-oxidase gene (35S:NoGA2ox3) or to treatment with the gibberellin biosynthesis inhibitor paclobutrazol, flowered later than wild type. These plants also showed inhibition of the expression of molecular markers related to floral transition (NtMADS-4 and NtMADS-11). To investigate further the role of gibberellin in flowering, we quantified its content in tobacco plants during development. We found a progressive reduction in the levels of GA1 and GA4 in the apical shoot during vegetative growth, reaching very low levels at floral transition and beyond. This excludes these two gibberellins as flowering-promoting factors in the apex. The evolution of active gibberellin content in apical shoots agrees with the expression patterns of gibberellin metabolism genes: two encoding gibberellin 20-oxidases (NtGA20ox1 = Ntc12, NtGA20ox2 = Ntc16), one encoding a gibberellin 3-oxidase (NtGA3ox1 = Nty) and one encoding a gibberellin 2-oxidase (NtGA2ox1), suggesting that active gibberellins are locally synthesized. In young apical leaves, GA1 and GA4 content and the expression of gibberellin metabolism genes were rather constant. Our results support that floral transition in tobacco, in contrast to that in Arabidopsis, is not regulated by the levels of GA1 and GA4 in apical shoots, although reaching a threshold in gibberellin levels may be necessary to allow meristem competence for flowering.  相似文献   

11.
Ethylene decreases the content of endogenous abscisic acid (ABA) and increases the level of bioactive gibberellin A1 (GA1) in the submerged internodes of deepwater rice. During partial submergence, internodes of deepwater rice undergo rapid elongation as a result of ethylene accumulation in the internodal lacunae. In anin vitro experiment using stem sections from deepwater rice, treatment with 5 μL L-1 ethylene promoted stem growth by up to 3.2-foId times over air treatment. Expression patterns were analyzed for genes that encode GA- and ABA-biosynthesis enzymes to determine any possible molecular basis for the changes observed in GA1 and ABA contents as a result of ethylene action. Expression of theOsGA20ox2 andOsGA20ox4 genes, which encode GA 20-oxidase, and of theOsGA3ox2 gene, which encodes the enzyme that converts GA20 to CA1, was up-regulated, whereas that of three ABA-biosynthetic genes —OsNCED1, OsNCED2, andOsNCEDS-was down-regulated in the presence of ethylene. These results indicate that GA and ABA contribute equally to the submergence-or ethylene-induced stem elongation of deepwater rice via the coordinated and opposite regulation of biosynthesis.  相似文献   

12.
Seedling vigor is among the major determinants of stable stand establishment in direct-seeded rice (Oryza sativa L.) in temperate regions. Quantitative trait loci (QTL) for seedling vigor were identified using 250 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars Kakehashi and Dunghan Shali. Seedling heights measured at 14 days after sowing were 20.3 and 29.4 cm for Kakehashi and Dunghan Shali, respectively. For the RILs, the height ranged from 14.1 to 31.7 cm. Four putative QTLs associated with seedling height were detected. qPHS3-2, the major QTL that was located on the long arm of chromosome 3, accounted for 26.2 % of the phenotypic variance. Using progeny of the near isogenic lines (NILs) produced by the backcross introduction of a chromosome segment carrying this major QTL into an elite cultivar Iwatekko, we fine-mapped qPHS3-2 to a 81-kb interval between two markers, ID_CAPS_01 and RM16227. Within this mapped region, we identified the gene OsGA20ox1, which is related to gibberellin (GA) biosynthesis. The relative expression levels of GA20ox1 in seedlings of Dunghan Shali and NILs were higher than that of Iwatekko. Concomitantly, the amount of endogenous active GA was higher in Dunghan Shali and the NILs compared to the level detected in Iwatekko. These results indicate that OsGA20ox1 is a strong candidate gene for major QTL controlling seedling vigor in rice.  相似文献   

13.
Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.  相似文献   

14.
We examined the gibberellin (GA) and ethylene regulation of submergence-induced elongation in seedlings of the submergence-tolerant lowland rice (Oryza sativa L.) cvs Senia and Bomba. Elongation was enhanced after germination to facilitate water escape and reach air. We found that submergence-induced elongation depends on GA because it was counteracted by paclobutrazol (an inhibitor of GA biosynthesis), an effect that was negated by GA3. Moreover, in the cv Senia, submergence increased the content of active GA1 and its immediate precursors (GA53, GA19 and GA20) by enhancing expression of several GA biosynthesis genes (OsGA20ox1 and -2, and OsGA3ox2), but not by decreasing expression of several OsGA2ox (GA inactivating genes). Senia seedlings, in contrast to Bomba seedlings, did not elongate in response to ethylene or 1-aminocyclopropane-1-carboxylic-acid (ACC; an ethylene precursor) application, and submergence-induced elongation was not reduced in the presence of 1-methylcyclopropene (1-MCP; an ethylene perception inhibitor). Ethylene emanation was similar in Senia seedlings grown in air and in submerged-grown seedlings following de-submergence, while it increased in Bomba. The expression of ethylene biosynthesis genes (OsACS1, -2 and -3, and OsACO1) was not affected in Senia, but expression of OsACS5 was rapidly enhanced in Bomba upon submergence. Our results support the conclusion that submergence elongation enhancement of lowland rice is due to alteration of GA metabolism leading to an increase in active GA (GA1) content. Interestingly, in the cv Senia, in contrast to cv Bomba, this was triggered through an ethylene-independent mechanism.  相似文献   

15.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

16.
17.
Seedling vigor, which is controlled by many quantitative trait loci (QTLs), is one of several important agronomic traits for direct-seedling rice systems. However, isolating these QTL genes is laborious and expensive. Here, we combined QTL mapping and microarray profiling to identify QTL genes for seedling vigor. By performing QTL mapping using 82 backcross inbred lines (BILs) of the Koshihikari (japonica) and Habataki (indica) cultivars for the rice initial growth, we identified two QTLs, early-stage plant development1/2 (qEPD1 and qEPD2), whose Koshihikari alleles promote plant height and/or leaf sheath length. Phenotypic analysis of the two substituted lines carrying the Habataki qEPD1 or qEPD2 allele revealed that qEPD2 functioned more dominantly for the initial growth of rice. From the microarray experiment, 55 and 45 candidate genes were found in the qEPD1 and qEPD2 genomic regions, which are expressed differentially between each substitution line (SL) and Koshihikari. Gibberellin 20 oxidase-2 (OsGA20ox2), which is identical to Semi Dwarf1 (SD1), was included among the 55 candidate genes of qEPD1, whereas its paralog, OsGA20ox1, was included among the 45 candidate genes of qEPD2. Consistently, introduction of the Koshihikari OsGA20ox1 allele into SL(qEPD2) increaseed its plant height and leaf sheath length significantly relative to the introduction of the Habataki OsGA20ox1 allele. Therefore, microarray profiling could be useful for rapidly screening QTL candidate genes. We concluded that OsGA20ox1 and OsGA20ox2 (SD1) function during the initial growth of rice, but OsGA20ox1 plays a dominant role in increasing plant height and leaf sheath length at the initial growth stage.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号