首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

2.
Cysteine cathepsins: cellular roadmap to different functions   总被引:2,自引:0,他引:2  
Brix K  Dunkhorst A  Mayer K  Jordans S 《Biochimie》2008,90(2):194-207
Cysteine cathepsins belong to the papain-like family C1 of clan CA cysteine peptidases. These enzymes are ubiquitously expressed and exert their proteolytic activity mainly, but not exclusively within the compartments along the endocytic pathway. Moreover, cysteine cathepsins are active in pericellular environments as soluble enzymes or bound to cell surface receptors at the plasma membrane, and possibly even within secretory vesicles, the cytosol, mitochondria, and within the nuclei of eukaryotic cells. Proteolytic actions performed by cysteine cathepsins are essential in the maintenance of homeostasis and depend heavily upon their correct sorting and trafficking within cells. As a consequence, the numerous and diverse approaches to identification, qualitative and quantitative determination, and visualization of cysteine cathepsin functions in vitro, in situ, and in vivo cover the entire spectrum of biochemistry, molecular and cell biology. This review focuses upon the transport pathways directing cysteine cathepsins to their points of action and thus emphasizes the broader role and functionality of cysteine cathepsins in a number of specific cellular locales. Such understanding will provide a foundation for future research investigating the involvement of these peptidases with their substrates, inhibitors, and the intertwined proteolytic networks at the hubs of complex biological systems.  相似文献   

3.
Silicosis is an occupational pneumoconiosis caused by inhalation of crystalline silica. It leads to the formation of fibrohyalin nodes that result in progressive fibrosis. Alternatively, emphysema may occur, with abnormal destruction of collagen fibres in the advanced stages. Although the pathophysiological mechanisms remain unclear, it has been established that the lung responds to silica by massive enrollment of alveolar macrophages, triggering an inflammatory cascade of reactions. An imbalance in the expression of lung proteases and their inhibitors is implicated in extracellular matrix remodelling and basement membrane disruption. Moreover, exposure to silica can initiate apoptotic cell death of macrophages. This review summarises the current knowledge on cysteine cathepsins that have been ignored so far during silicosis and outlines the recent progress on cellular pathways leading to silica-induced caspase activation, which have been partly delineated.  相似文献   

4.

Background

Cysteine cathepsins are normally found in the lysosomes where they are involved in intracellular protein turnover. Their ability to degrade the components of the extracellular matrix in vitro was first reported more than 25 years ago. However, cathepsins were for a long time not considered to be among the major players in ECM degradation in vivo. During the last decade it has, however, become evident that abundant secretion of cysteine cathepsins into extracellular milieu is accompanying numerous physiological and disease conditions, enabling the cathepsins to degrade extracellular proteins.

Scope of view

In this review we will focus on cysteine cathepsins and their extracellular functions linked with ECM degradation, including regulation of their activity, which is often enhanced by acidification of the extracellular microenvironment, such as found in the bone resorption lacunae or tumor microenvironment. We will further discuss the ECM substrates of cathepsins with a focus on collagen and elastin, including the importance of that for pathologies. Finally, we will overview the current status of cathepsin inhibitors in clinical development for treatment of ECM-linked diseases, in particular osteoporosis.

Major conclusions

Cysteine cathepsins are among the major proteases involved in ECM remodeling, and their role is not limited to degradation only. Deregulation of their activity is linked with numerous ECM-linked diseases and they are now validated targets in a number of them. Cathepsins S and K are the most attractive targets, especially cathepsin K as a major therapeutic target for osteoporosis with drugs targeting it in advanced clinical trials.

General significance

Due to their major role in ECM remodeling cysteine cathepsins have emerged as an important group of therapeutic targets for a number of ECM-related diseases, including, osteoporosis, cancer and cardiovascular diseases. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

5.
6.
Hemopexin: structure,function, and regulation   总被引:1,自引:0,他引:1  
Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.  相似文献   

7.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

8.
9.
10.
Cysteine cathepsins have been for a long time considered to execute mainly nonspecific bulk proteolysis in the endolysosomal system. However, this view has been changing profoundly over the last decade as cathepsins were found in the cytoplasm, nucleus and in the extracellular milieu. Cathepsins are currently gaining increased attention largely because of their extracellular roles associated with disease development and progression. While kept under tight control under physiological conditions, their dysregulated and elevated activity in the extracellular milieu are distinctive hallmarks of numerous diseases such as various cancers, inflammatory disorders, rheumatoid arthritis, bone disorders and heart diseases. In this review, we discuss cysteine cathepsins with a major focus on their extracellular roles and extracellular proteolytic targets beyond degradation of the extracellular matrix. We further highlight the perspectives of cathepsin research and novel avenues in cathepsin-based diagnostic and therapeutic applications.  相似文献   

11.
Biology of amyloid: structure, function, and regulation   总被引:1,自引:0,他引:1  
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.  相似文献   

12.
The mechanism of the complex enzyme nitrogenase has long been one of the most challenging problems in bioinorganic chemistry. The complexity of the metal centers of nitrogenase has stretched the boundaries of biochemical, physical and computational tools for providing insights into its structure and chemical function. Recently, there have been several key advances in crystallography and spectroscopy that have impacted the way the nitrogenase mechanism is approached. These advances have opened new frontiers in nitrogenase research, which has started to reveal novel details about the molecular structure, substrate binding and reduction. Here, we discuss these recent advances and their implications on the future of nitrogenase research.  相似文献   

13.
Glycosylation is the major modification of proteins, and alters their structures, functions and localizations. Glycosylation of secretory and surface proteins takes place in the endoplasmic reticulum and Golgi apparatus in eukaryotic cells and is classified into four modification pathways, namely N- and O-linked glycosylations, glycosylphosphatidylinositol (GPI)-anchor and C-mannosylation. These modifications are accomplished by sequential addition of single monosaccharides (O-linked glycosylation and C-mannosylation) or en bloc transfer of lipid-linked oligosaccharides (N-linked glycosylation and GPI) onto the proteins. The glycosyltransferases involved in these glycosylations are categorized into two classes based on the type of sugar donor, namely nucleotide-sugars and dolichol-phosphate-sugars, in which the sugar moiety is mannose or glucose. The sugar transfer from dolichol-phosphate-sugars occurs exclusively on the luminal side of the endoplasmic reticulum and is utilized in all four glycosylation pathways. In this review, we focus on the biosynthesis of dolichol-phosphate-mannose, and particularly on the mammalian enzyme complex involved in the reaction.  相似文献   

14.
Guanylyl cyclase structure, function and regulation   总被引:1,自引:0,他引:1  
Potter LR 《Cellular signalling》2011,23(12):1921-1926
Nitric oxide, bicarbonate, natriuretic peptides (ANP, BNP and CNP), guanylins, uroguanylins and guanylyl cyclase activating proteins (GCAPs) activate a family of enzymes variously called guanyl, guanylyl or guanylate cyclases that catalyze the conversion of guanosine triphosphate to cyclic guanosine monophosphate (cGMP) and pyrophosphate. Intracellular cyclic GMP is a second messenger that modulates: platelet aggregation, neurotransmission, sexual arousal, gut peristalsis, blood pressure, long bone growth, intestinal fluid secretion, lipolysis, phototransduction, cardiac hypertrophy and oocyte maturation. This review briefly discusses the discovery of cGMP and guanylyl cyclases, then nitric oxide, nitric oxide synthase and soluble guanylyl cyclase are described in slightly greater detail. Finally, the structure, function, and regulation of the individual mammalian single membrane-spanning guanylyl cyclases GC-A, GC-B, GC-C, GC-D, GC-E, GC-F and GC-G are described in greatest detail as determined by biochemical, cell biological and gene-deletion studies.  相似文献   

15.
Glioblastoma (GBM) is the most lethal brain tumor also due to malignant and therapy-resistant GBM stem cells (GSCs) that are localized in protecting hypoxic GSC niches. Some members of the cysteine cathepsin family of proteases have been found to be upregulated in GBM. Cathepsin K gene expression is highly elevated in GBM tissue versus normal brain and it has been suggested to regulate GSC migration out of the niches. Here, we investigated the cellular distribution of cathepsins B, X and K in GBM tissue and whether these cathepsins are co-localized in GSC niches. Therefore, we determined expression of these cathepsins in serial paraffin sections of 14 human GBM samples and serial cryostat sections of two samples using immunohistochemistry and metabolic mapping of cathepsin activity using selective fluorogenic substrates. We detected cathepsins B, X and K in peri-arteriolar GSC niches in 9 out of 16 GBM samples, which were defined by co-expression of the GSC marker CD133, the niche marker stromal-derived factor-1α (SDF-1α) and smooth muscle actin as a marker for arterioles. The expression of cathepsin B and X was detected in stromal cells and cancer cells throughout the GBM sections, whereas cathepsin K expression was more restricted to arteriole-rich regions in the GBM sections. Metabolic mapping showed that cathepsin B, but not cathepsin K is active in GSC niches. On the basis of these findings, it is concluded that cathepsins B, X and K have distinct functions in GBM and that cathepsin K is the most likely GSC niche-related cathepsin of the three cathepsins investigated.  相似文献   

16.
17.
18.
Nitrate transporters in plants: structure, function and regulation   总被引:43,自引:0,他引:43  
Physiological studies have established that plants acquire their NO(-3) from the soil through the combined activities of a set of high- and low-affinity NO(-3) transport systems, with the influx of NO(-3) being driven by the H(+) gradient across the plasma membrane. Some of these NO(-3) transport systems are constitutively expressed, while others are NO(-3)-inducible and subject to negative feedback regulation by the products of NO(-3) assimilation. Here we review recent progress in the characterisation of the two families of NO(-3) transporters that have so far been identified in plants, their structure and their regulation, and consider the evidence for their roles in NO(-3) acquisition. We also discuss what is currently known about the genetic basis of NO(-3) induction and feedback repression of the NO(-3) transport and assimilatory pathway in higher plants.  相似文献   

19.
20.
Human endostatin, a potent anti-angiogenic protein, is generated by release of the C terminus of collagen XVIII. Here, we propose that cysteine cathepsins are involved in both the liberation and activation of bioactive endostatin fragments, thus regulating their anti-angiogenic properties. Cathepsins B, S, and L efficiently cleaved in vitro FRET peptides that encompass the hinge region corresponding to the N terminus of endostatin. However, in human umbilical vein endothelial cell-based assays, silencing of cathepsins S and L, but not cathepsin B, impaired the generation of the ~22-kDa endostatin species. Moreover, cathepsins L and S released two peptides from endostatin with increased angiostatic properties and both encompassing the NGR sequence, a vasculature homing motif. The G10T peptide (residues 1455-1464: collagen XVIII numbering) displayed compelling anti-proliferative (EC(50) = 0.23 nm) and proapoptotic properties. G10T inhibited aminopeptidase N (APN/CD13) and reduced tube formation of endothelial cells in a manner similar to bestatin. Combination of G10T with bestatin resulted in no further increase in anti-angiogenic activity. Taken together, these data suggest that endostatin-derived peptides may represent novel molecular links between cathepsins and APN/CD13 in the regulation of angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号