共查询到20条相似文献,搜索用时 0 毫秒
1.
Lamkanfi M Festjens N Declercq W Vanden Berghe T Vandenabeele P 《Cell death and differentiation》2007,14(1):44-55
Caspases, a family of evolutionarily, conserved cysteinyl proteases, mediate both apoptosis and inflammation through aspartate-specific cleavage of a wide number of cellular substrates. Most substrates of apoptotic caspases have been conotated with cellular dismantling, while inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. Through detailed functional analysis of conditional caspase-deficient mice or derived cells, caspase biology has been extended to cellular responses such as cell differentiation, proliferation and NF-kappaB activation. Here, we discuss recent data indicating that non-apoptotic functions of caspases involve proteolysis exerted by their catalytic domains as well as non-proteolytic functions exerted by their prodomains. Homotypic oligomerization motifs in the latter mediate the recruitment of adaptors and effectors that modulate NF-kappaB activation. The non-apoptotic functions of caspases suggest that they may become activated independently of--or without--inducing an apoptotic cascade. Moreover, the existence of non-catalytic caspase-like molecules such as human caspase-12, c-FLIP and CARD-only proteins further supports the non-proteolytic functions of caspases in the regulation of cell survival, proliferation, differentiation and inflammation. 相似文献
2.
Fritzen M Flores MP Reis CV Chudzinski-Tavassi AM 《Biochemical and biophysical research communications》2005,333(2):517-523
A severe hemorrhagic syndrome produced by contact with Lonomia obliqua caterpillars has become epidemic in southern Brazil. A significant thrombin production with intense consumption of fibrinogen and high D-dimer production indicates a consumption coagulopathy and secondary fibrinolysis in patients. Lopap is a single-chain 69kDa serine protease isolated from the crude extract of L. obliqua bristles. Experiments in mice showed that the purified protein, similar to the crude extract, causes uncoagulable blood by fibrinogen depletion. In order to characterize the effects of Lopap on cells involved with hemostatic system, we performed experiments using human umbilical vein endothelial cells (HUVECs). Our results show that Lopap exerts a direct effect on endothelial cells by increasing the liberation of molecules involved in the regulation of vascular tone, inhibiting platelet activation and chemotaxis, apart from inducing the expression of cell adhesion molecules which participate in inflammatory responses. The release or new synthesis of mediators involved in coagulation as von Willebrand factor and tissue factor, or in fibrinolysis as tissue plasminogen activator, was not affected by Lopap. Also our results demonstrated that Lopap acts on cell survival of HUVECs, regulating the expression of molecules as NO and avoiding cell death. 相似文献
3.
4.
5.
A novel Lyn-binding peptide inhibitor blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. 总被引:3,自引:0,他引:3
Receptor antagonists block all receptor-coupled signaling pathways indiscriminately. We introduce a novel class of peptide inhibitors that is designed to block a specific signal from a receptor while keeping other signals intact. This concept was tested in the model of IL-5 signaling via Lyn kinase. We have previously mapped the Lyn-binding site of the IL-5/GM-CSF receptor common beta (beta c) subunit. In the present study, we designed a peptide inhibitor using the Lyn-binding sequence. The peptide was N-stearated to enable cellular internalization. The stearated peptide blocked the binding of Lyn to the beta c receptor and the activation of Lyn. The lipopeptide did not affect the activation of Janus kinase 2 or its association with beta c. The inhibitor blocked the Lyn-dependent functions of IL-5 in vitro (e.g., eosinophil differentiation from stem cells and eosinophil survival). It did not affect eosinophil degranulation. When applied in vivo, the Lyn-binding peptide significantly inhibited airway eosinophil influx in a mouse model of asthma. The lipopeptide had no effect on basophil histamine release or on the proliferation of B cells and T cells. To our knowledge, this is the first report on an inhibitor of IL-5 that blocks eosinophil differentiation, survival, and airway eosinophilic inflammation. This novel strategy to develop peptide inhibitors can be applied to other receptors. 相似文献
6.
Role of nitric oxide in the regulation of neuronal proliferation, survival and differentiation 总被引:11,自引:0,他引:11
Nitric oxide (NO), an important cellular messenger, has been linked to both neurodegenerative and neuroprotective actions. In the present review, we focus on recent data establishing a survival and differentiation role for NO in several neural in vitro and in vivo models. Nitric oxide has been found to be essential for survival of neuronal cell lines and primary neurons in culture under various death challenges. Furthermore, its lack may aggravate some neuropathological conditions in experimental animals. Several cellular pathways and signaling systems subserving this neuroprotective role of NO are considered in the review. Survey of recent data related to the developmental role of NO mainly focus on its action as a negative regulator of neuronal precursor cells proliferation and on its role of promotion of neuronal differentiation. Discussion on discrepancies arising from the literature is focused on the Janus-faced properties of the molecule and it is proposed that most controversial results are related to the intrinsic property of NO to compensate among functionally opposed effects. As an example, the increased proliferation of neural cell precursors under conditions of NO shortage may be, later on in the development, compensated by increased elimination through programmed cell death as a consequence of the lack of the survival-promoting action of the molecule. To elucidate these complex, and possibly contrasting, effects of NO is indicated as an important task for future researches. 相似文献
7.
8.
Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC–MEF2 complexes
下载免费PDF全文

Marco Miceli Mariarosaria Conte Lucrezia Manente Alfonso Baldi Antonio De Luca Dante Rotili Sergio Valente Antonello Mai Alessandro Usiello Hinrich Gronemeyer Lucia Altucci 《EMBO reports》2009,10(7):776-782
Histone deacetylase (HDAC) inhibitors are promising new epi‐drugs, but the presence of both class I and class II enzymes in HDAC complexes precludes a detailed elucidation of the individual HDAC functions. By using the class II‐specific HDAC inhibitor MC1568, we separated class I‐ and class II‐dependent effects and defined the roles of class II enzymes in muscle differentiation in cultured cells and in vivo. MC1568 arrests myogenesis by (i) decreasing myocyte enhancer factor 2D (MEF2D) expression, (ii) by stabilizing the HDAC4–HDAC3–MEF2D complex, and (iii) paradoxically, by inhibiting differentiation‐induced MEF2D acetylation. In vivo MC1568 shows an apparent tissue‐selective HDAC inhibition. In skeletal muscle and heart, MC1568 inhibits the activity of HDAC4 and HDAC5 without affecting HDAC3 activity, thereby leaving MEF2–HDAC complexes in a repressed state. Our results suggest that HDAC class II‐selective inhibitors might have a therapeutic potential for the treatment of muscle and heart diseases. 相似文献
9.
Besides inactivating tumour suppressor activity in cells, mutations in p53 confer significant oncogenic functions and promote metastasis and resistance to anticancer therapy. A variety of therapies involving genetic and epigenetic signalling events regulate tumorogenesis and progression in such cases. Pharmacological interventions with HDAC inhibitors have shown promise in therapy. This work explores the changes in efficacy of the four HDAC inhibitors SAHA, MS-275, valproic acid and sodium butyrate on a panel of colon cancer cell lines – HCT116 (p53 wt), HCT116 p53-/-, HT29 and SW480 (with mutations in p53). Clonogenic assays, gene profiling and epigenetic expression done on these cells point to p53 dependent differential activity of the 4 HDAC inhibitors which also elevate methylation levels in p53 mutant cell lines. In silico modelling establishes the alterations in interactions that lead to such differential activity of valproic acid, one of the inhibitors considered for the work. Molecular Dynamic simulations carried out on the valproic acid complex ensure stability of the complex. This work establishes a p53 dependent epigenetic signalling mechanism triggered by HDAC inhibition expanding the scope of HDAC inhibitors in adjuvant therapy for p53 mutant tumours. 相似文献
10.
Neurofilaments (NF) are detected in the cerebrospinal fluid of multiple sclerosis (MS) patients, and their concentration correlates with disease severity. We recently demonstrated that NF and co-isolated proteins increase the proliferation and differentiation of oligodendrocytes (OL) in vitro. If these proteins are released in the extracellular environment in MS, they might then regulate remyelination by OL. To test this hypothesis we took advantage of a paradigm of OL toxic injury using lysophosphatidyl choline (LPC), which decreases proliferation and differentiation of surviving cells, and destroys myelin-like membranes. In OL cultures that have been treated with LPC, NF fractions as well as tubulin (TUB) significantly improved recovery: the number of OL progenitors (OLP, A2B5+ cells) increased by 100% and their proliferation by 200%, whereas differentiated (CNP+) and mature (MBP+) cells increased by 150% compared to cultures treated with LPC alone. When added at the time of LPC treatment, NF and TUB protected OL from LPC toxicity; they increased OLP by 90%, as well as the number of CNP+ and MBP+ OL by 65–110%, respectively, compared to cultures treated only with LPC. These effects were specific since irrelevant proteins (actin, skin proteins) were ineffective. This demonstrates that NF and TUB protect OL and increase OLP proliferation, as well as their survival, when challenged with LPC, without delaying differentiation and maturation in vitro. Thus, NF and TUB delivered following axonal damage in MS could participate in the regulation of remyelination through this process. 相似文献
11.
Reversible acetylation mediated by histone deacetylases (HDACs) influences a broad repertoire of physiological processes, many of which are aberrantly controlled in tumor cells. As HDAC inhibition prompts tumor cells to enter apoptosis, small-molecule HDAC inhibitors have been developed as a new class of mechanism-based anti-cancer agent, many of which have entered clinical trials. Although the clinical picture is evolving and the precise utility of HDAC inhibitors remains to be determined, it is noteworthy that certain tumor types undergo a favorable response, in particular hematological malignancies. Vorinostat and romidepsin have been approved for treating cutaneous T-cell lymphoma in patients with progressive, persistent or recurrent disease. Here, we discuss developments in our understanding of molecular events that underlie the anti-cancer effects of HDAC inhibitors and relate this information to the emerging clinical picture for the application of these inhibitors in the treatment of cancer. 相似文献
12.
Recent experiments have unravelled novel signal transduction pathways that involve the SRC homology 2 (SH2) domain adapter protein SHB. SHB is ubiquitously expressed and contains proline rich motifs, a phosphotyrosine binding (PTB) domain, tyrosine phosphorylation sites and an SH2 domain and serves a role in generating signaling complexes in response to tyrosine kinase activation. SHB mediates certain responses in platelet-derived growth factor (PDGF) receptor-, fibroblast growth factor (FGF) receptor-, neural growth factor (NGF) receptor TRKA-, T cell receptor-, interleukin-2 (IL-2) receptor- and focal adhesion kinase- (FAK) signaling. Upstream of SHB in some cells lies the SRC-like FYN-Related Kinase FRK/RAK (also named BSK/IYK or GTK). FRK/RAK and SHB exert similar effects when overexpressed in rat phaeochromocytoma (PC12) and beta-cells, where they both induce PC12 cell differentiation and beta-cell proliferation. Furthermore, beta-cell apoptosis is augmented by these proteins under conditions that cause beta-cell degeneration. The FRK/RAK-SHB responses involve FAK and insulin receptor substrates (IRS) -1 and -2. Besides regulating apoptosis, proliferation and differentiation, SHB is also a component of the T cell receptor (TCR) signaling response. In Jurkat T cells, SHB links several signaling components with the TCR and is thus required for IL-2 production. In endothelial cells, SHB both promotes apoptosis under conditions that are anti-angiogenic, but is also required for proper mitogenicity, spreading and tubular morphogenesis. In embryonic stem cells, dominant-negative SHB (R522K) prevents early cavitation of embryoid bodies and reduces differentiation to cells expressing albumin, amylase, insulin and glucagon, suggesting a role of SHB in development. In summary, SHB is a versatile signal transduction molecule that produces diverse biological responses in different cell types under various conditions. SHB operates downstream of GTK in cells that express this kinase. 相似文献
13.
During Drosophila oogenesis two distinct stem cell populations produce either germline cysts or the somatic cells that surround each cyst and separate each formed follicle. From analyzing daughterless (da) loss-of-function, overexpression and genetic interaction phenotypes, we have identified several specific requirements for da(+) in somatic cells during follicle formation. First, da is a critical regulator of somatic cell proliferation. Also, da is required for the complete differentiation of polar and stalk cells, and elevated da levels can even drive the convergence and extension that is characteristic of interfollicular stalks. Finally, da is a genetic regulator of an early checkpoint for germline cyst progression: Loss of da function inhibits normally occurring apoptosis of germline cysts at the region 2a/2b boundary of the germarium, while da overexpression leads to postmitotic cyst degradation. Collectively, these da functions govern the abundance and diversity of somatic cells as they coordinate with germline cysts to form functional follicles. 相似文献
14.
Jennifer Jurkin Gordin Zupkovitz Sabine Lagger Reinhard Grausenburger Astrid Hagelkruys Lukas Kenner Christian Seiser 《Cell cycle (Georgetown, Tex.)》2011,10(3):406-412
Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for antitumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.Key words: tumor therapy, HDAC inhibitor, teratoma, chromatin, epigenetics, proliferation, histone acetylation, tumorigenesis 相似文献
15.
Yanyang Li Yan Zhou Pengyu Qian Yongzhen Wang Falong Jiang Zhenglin Yao Wenxiang Hu Yanjin Zhao Shuxin Li 《Bioorganic & medicinal chemistry letters》2013,23(1):179-182
A series of novel benzamides derivatives was designed and synthesized as HDAC inhibitors. Exploration of the structure–activity relationships resulted in compounds that are potent in vitro. In addition, the best compound 1a exhibited an acceptable pharmacokinetic profile with bioavailability in rat of 81% and could be considered as a candidate compound for further development. 相似文献
16.
Hang TC Lauffenburger DA Griffith LG Stolz DB 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(3):G375-G388
Primary rat liver sinusoidal endothelial cells (LSEC) are difficult to maintain in a differentiated state in culture for scientific studies or technological applications. Relatively little is known about molecular regulatory processes that affect LSEC differentiation because of this inability to maintain cellular viability and proper phenotypic characteristics for extended times in vitro, given that LSEC typically undergo death and detachment around 48-72 h even when treated with VEGF. We demonstrate that particular lipid supplements added to serum-free, VEGF-containing medium increase primary rat liver LSEC viability and maintain differentiation. Addition of a defined lipid combination, or even oleic acid (OA) alone, promotes LSEC survival beyond 72 h and proliferation to confluency. Moreover, assessment of LSEC cultures for endocytic function, CD32b surface expression, and exhibition of fenestrae showed that these differentiation characteristics were maintained when lipids were included in the medium. With respect to the underlying regulatory pathways, we found lipid supplement-enhanced phosphatidylinositol 3-kinase and MAPK signaling to be critical for ensuring LSEC function in a temporally dependent manner. Inhibition of Akt activity before 72 h prevents growth of SEC, whereas MEK inhibition past 72 h prevents survival and proliferation. Our findings indicate that OA and lipids modulate Akt/PKB signaling early in culture to mediate survival, followed by a switch to a dependence on ERK signaling pathways to maintain viability and induce proliferation after 72 h. We conclude that free fatty acids can support maintenance of liver LSEC cultures in vitro; key regulatory pathways involved include early Akt signaling followed by ERK signaling. 相似文献
17.
Adult neural precursor cells (NPCs) respond to injury or disease of the CNS by migrating to the site of damage or differentiating locally to replace lost cells. Factors that mediate this injury induced NPC response include chemokines and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ), which we have shown previously promotes neuronal differentiation. RT-PCR was used to compare expression of chemokines and their receptors in normal adult mouse brain and in cultured NPCs in response to IFNγ and TNFα. Basal expression of many chemokines and their receptors was found in adult brain, predominantly in neurogenic regions, with OB?SVZ>hippocampus and little or no expression in non-neurogenic regions, such as cortex. Treatment of SVZ-derived NPCs with IFNγ and TNFα (alone and in combination) resulted in significant upregulation of expression of specific chemokines, with CXCL1, CXCL9 and CCL2 most highly upregulated and CCL19 downregulated. Unlike IFNγ, chemokine treatment of NPCs in vitro had little or no effect on survival, proliferation or migration. Neuronal differentiation was promoted by CXCL9, CCL2 and CCL21, while astrocyte and total oligodendrocyte differentiation was not affected. However, IFNγ, CXCL1, CXCL9 and CCL2 promoted oligodendrocyte maturation. Therefore, not only do NPCs express chemokine receptors, they also produce several chemokines, particularly in response to inflammatory mediators. This suggests that autocrine or paracrine production of specific chemokines by NPCs in response to inflammatory mediators may regulate differentiation into mature neural cell types and may alter NPC responsiveness to CNS injury or disease. 相似文献
18.
Vachon PH 《Médecine sciences : M/S》2006,22(4):423-429
The regulatory mechanisms of cell survival and apoptosis are very complex in nature, implicating numerous players and signaling pathways not only in the decision-making process of surviving (or dying), but as well as in the execution of apoptosis itself. The same complex nature applies with regards to anoikis, a form of apoptosis that is largely regulated by integrin-mediated, cell-extracellular matrix interactions. However, cell survival, apoptosis and anoikis also happen to implicate further mechanistic distinctions according to the specific tissue and/or cell type concerned. Incidentally, recent studies in a particular tissue, the human intestinal epithelium, have unearthed yet another layer of complexity in the regulation of these three cellular processes, namely the implication of differentiation state-specific mechanisms. Although our understanding of the molecular underpinnings of this new concept of differentiation state-distinct regulation of cell survival, apoptosis and/or anoikis is in its infancy, there is already evidence that such principle applies as well to cell types other than intestinal epithelial cells. Further studies on the differentiation state-specific regulation of these three cellular processes, either under normal or physiopathological situations, should prove crucial in increasing our understanding of pathologies which implicate a dysregulation of apoptosis and/or anoikis - such as cancer. 相似文献
19.
Chemerin was isolated as the natural ligand of the G protein-coupled receptor ChemR23. Chemerin acts as a chemotactic factor for leukocyte populations expressing ChemR23, particularly immature plasmacytoid dendritic cells, but also immature myeloid DCs, macrophages and natural killer cells. Chemerin is expressed by epithelial and non-epithelial cells as an inactive precursor, present at nanomolar concentrations in plasma. Processing of the precursor C-terminus is required for generating bioactive forms of chemerin. Various proteases mediate this processing, including neutrophil serine proteases and proteases from coagulation and fibrinolytic cascades. ChemR23-expressing cells are recruited in human inflammatory diseases, such as psoriasis and lupus. In animal models, both pro-inflammatory and anti-inflammatory roles of chemerin have been reported. Recently, two other receptors for chemerin were described, GPR1 and CCRL2, but their functional relevance is largely unknown. Both chemerin and ChemR23 are also expressed by adipocytes, and the emerging role of chemerin as an adipokine regulating lipid and carbohydrate metabolism is an area of intense research. 相似文献
20.