首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cutO gene of the photosynthetic purple bacterium Rhodobacter capsulatus codes for a multicopper oxidase as demonstrated by the ability of the recombinant Strep-tagged protein to oxidize several mono- and diphenolic compounds known as substrates of Escherichia coli CueO and multicopper oxidases from other organisms. The R. capsulatus cutO gene was shown to form part of a tri-cistronic operon, orf635-cutO-cutR. Expression of the cutO operon was repressed under low copper conditions by the product of the cutR gene. CutO conferred copper tolerance not only under aerobic conditions, as described for the well-characterized E. coli multicopper oxidase CueO, but also under anaerobic conditions.  相似文献   

2.
We report the cloning and sequencing of the gene containing cytochrome c' (cycP) from the photosynthetic purple bacterium Rhodobacter capsulatus and the regions flanking that gene. Mutant strains unable to synthesize cytochrome c' had increased sensitivity to nitrosothiols and to nitric oxide (which binds to the heme moiety of cytochrome c').  相似文献   

3.
The uptake by light-grown cells of Rhodobacter capsulatus of the highly toxic metalloid oxyanion tellurite (TeO(3)(2-)) was examined. We show that tellurite is rapidly taken up by illuminated cells in a process which is inhibited by the protonophore carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP) and by the K(+)/H(+) exchanger nigericin. Notably, the light-driven membrane potential (Delta psi) is enhanced by K(2)TeO(3)> or =200 microM. Further, tellurite uptake is largely insensitive to valinomycin, strongly repressed by the sulfhydryl reagent N-ethylethylmaleimide (NEM) and competitively inhibited by phosphate. We conclude that tellurite is transported into cells by a Delta pH-dependent, non-electrogenic process which is likely to involve the phosphate transporter (PiT family).  相似文献   

4.
《Gene》1996,170(1):149-150
The last step in heme synthesis is the insertion of iron into the ring of protoporphyrin IX. The enzyme which catalyzes this reaction, ferrochelatase (FC), is encoded by the hemH gene. A clone containing this gene from Rhodobacter capsulatus, a purple non-sulfur photosynthetic bacterium, has been sequenced. A single open reading frame was found which could encode a protein of 351 amino acids. This putative protein is very similar to other FC and contains the FC signature sequence  相似文献   

5.
Cloning of the Rhodobacter capsulatus hemA gene.   总被引:1,自引:1,他引:0       下载免费PDF全文
Portions of the Rhodobacter capsulatus hemA gene have been cloned from a hemA::Tn5 insertion strain into the lambda bacteriophage derivative EMBL3. A cosmid containing the wild-type R. capsulatus hemA gene was isolated by complementation of the hemA::Tn5 mutant. The cosmid contains a 1.4-kilobase EcoRI fragment that spans the hemA::Tn5 insertion site. The entire hemA gene is contained in this fragment and the adjacent 0.6-kilobase EcoRI fragment.  相似文献   

6.
7.
8.
The genome of Rhodobacter capsulatus has been completely sequenced. It consists of a single chromosome containing 3.5 Mb and a circular plasmid of 134 kb. This effort, started in 1992, began with a fine-structure restriction map of an overlapping set of cosmids that covered the genome. Cosmid sequencing led to a gapped genome that was filled by primer walking on the chromosome and by using lambda clones. Methods had to be developed to handle strong stops in the high GC (68%) inserts. Annotation was done with the ERGO system at Integrated Genomics, as was the reconstruction of the cell's metabolism. It was possible to recognize 3709 orfs of which functional assignments could be made with high confidence to 2392 (65%). Unusual features include the presence of numerous cryptic phage genomes embedded in the chromosome. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The DNA sequence of the Rhodobacter capsulatus nifH gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

10.
11.
12.
In photosynthetically grown Rhodobacter capsulatus, heme is a qualitatively minor end product of the common tetrapyrrole pathway, but it may play a significant regulatory role. Heme is synthesized from protoporphyrin by the product of the hemH gene, ferrochelatase. We have cloned the R. capsulatus hemH gene by complementation of an Escherichia coli hemH mutant. When a plasmid carrying the hemH gene is returned to R. capsulatus, ferrochelatase activity increases, aminolevulinate synthase activity decreases, and bacteriochlorophyll levels are dramatically lowered. This is the first in vivo evidence to suggest that heme feedback inhibits aminolevulinate synthase in R. capsulatus, thereby reducing porphyrin synthesis.  相似文献   

13.
By using an oligonucleotide mixture corresponding to a region highly conserved among alternative sigma factors we identified a new σ factor gene (rpoH) from Rhodobacter capsulatus. This gene encodes a protein of 34?kDa with strong similarity to the RpoH (σ 32) factors from other bacterial species. It was not possible to inactivate the R.?capsulatusrpoH gene by introducing a resistance cassette, implying that it is essential for growth. The 5′ ends of the mRNAs were mapped to two sequences with similarity to an rpoH- and an rpoD-dependent promoter, respectively. The amounts of both these mRNAs increased after heat shock, but were unaffected by a decrease in oxygen tension. Western analysis using a σ factor-specific antibody revealed the accumulation of a protein of about 34?kDa after heat shock, and an increase in the amounts of a protein with the same size after reduction of oxygen tension in R.?capsulatus cultures.  相似文献   

14.
15.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

16.
17.
18.
Cytoplasmic membrane vesicles isolated from the gram-negative photosynthetic bacterium Rhodobacter capsulatus catalyzed the transport of nucleotides. No transport occurred in the intact bacteria unless they were pretreated with EDTA. The transport rate was measured by incorporation of radioactive phosphate into externally added ADP or by incorporation of nonradioactive phosphate into added labeled ADP. The catalytic activities which utilized the added ADP were photosynthetic ATP synthesis, Pi-ADP exchange, and adenylate kinase. These activities were shown to occur on the cytoplasmic side of the internal membrane. The products were found in the outer medium. The rate of nucleotide transport across the membranes was comparable to the rate of photophosphorylation. These results indicated that nucleotides can be transported across the cytoplasmic membrane but not across the outer membrane of the native R. capsulatus cell. Therefore, by analogy to the mitochondrial ATP-ADP translocator, the exchange might function as an energy transfer system to the periplasm of these bacteria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号