首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometry has been used to demonstrate alterations in protein, RNA, and DNA content of cells as they traverse the cell cycle. Employing fluorescein isothiocyanate (FITC) to stain protein and propidium iodide (PI) to stain nucleic acids, multiple regions within the G1 and G2 phases of the cell cycle, in addition to the M phase, can be distinguished. In this study, cytograms of the 90 degree light scatter signal vs. PI fluorescence were remarkably similar to those of FITC fluorescence vs. PI fluorescence, suggesting a relationship between 90 degree light scatter and protein content. M-phase nuclei can be distinguished from G2-phase nuclei on cytograms of 90 degree light scatter vs. PI fluorescence. However, the percentage of mitotic nuclei obtained by this technique is less than that found by light microscopic analysis. Flow cytometric parameters of nuclei prepared by nonionic detergent (NP40) lysis in Dulbecco's PBS, Vindelov's buffer, or Pollack's hypotonic EDTA/Tris buffer were compared. The best resolution of mitotic nuclei was obtained in Pollack's buffer. However, the stainability of the M-phase nuclei is reduced, and the nuclei are located in the late S/G2 region of the single-parameter histogram.  相似文献   

2.
A new method to discriminate G1, S, G2, M, and G1 postmitotic cells   总被引:1,自引:0,他引:1  
A new flow cytometric method combining light scattering measurements, detection of bromodeoxyuridine (BrdU) incorporation via fluorescent antibody, and quantitation of cellular DNA content by propidium iodide (PI) allows identification of additional compartments in the cell cycle. Thus, while cell staining with BrdU-antibodies and PI reveals the G1, S, and G2 + M phases of the cell cycle, differences in light scattering allow separation of G2 phase cells from M phase cells and subdivision of G1 phase into two compartments, i.e., G1A representing postmitotic cells which mature to G1B cells ready to initiate DNA synthesis. The method involves fixation of cells in 70% ethanol, extraction of histones with HC1, and thermal denaturation of DNA. This treatment appears to enhance the differences in chromatin structure of cells in the various phases of the cell cycle to the extent that cells could be separated on the basis of the 90 degrees scatter. Mitotic cells show much lower scatter than G2 phase cells, and G1 postmitotic cells (G1A) show lower scatter than G1 cells about to enter the S phase (G1B). Light scattering is correlated with chromatin condensation, as judged by microscopic evaluation of cells sorted on the basis of light scatter. The method has the advantage over the parental BrdU/DNA bivariate analysis in allowing the G2 and M phases of the cell cycle to be separated and the G1 phase to be analyzed in more detail. The method may also allow separation of unlabeled S phase cells from mitotic cells and distinguish between labeled and unlabeled mitotic cells.  相似文献   

3.
Mitotic cells could be well discriminated from the cells in the G1-, S- and G2-phases of the cell cycle using pulse labeling of S-phase cells with bromodeoxy-uridine (BrdUrd) and staining of the cells for incorporated BrdUrd and total DNA content. Unlabeled G2- and M-phase cells could be measured as two separate peaks according to propidium iodide fluorescence. M-phase cells showed lower propidium iodide fluorescence emission compared to G2-phase cells. The fluorescence difference of M- and G2-phase cells was caused by the different thermal denaturation of their DNA. Best separation of M- and G2-phase cells was obtained after 30-50 min heat treatment at 95 degrees C. Mitotic index could be measured if no unlabeled S-phase cells were present in the cell culture. With additional measurements of 90 degree scatter and/or forward scatter signals, mitotic cells could be clearly discriminated from both unlabeled G2- and S-phase cells. The correct discrimination (about 99%) of mitotic cells from interphase cells was verified by visual analysis of the nuclear morphology after selective sorting. Unlabeled and labeled mitotic cells could be observed as pulse-labeled cells progressed through the cell cycle. We conclude that this modified BrdUrd/DNA technique using prolonged thermal denaturation and the simultaneous measurement of scatter signals may offer additional information especially in the presence of BrdUrd-unlabeled S-phase cells.  相似文献   

4.
Fluorescence spectra were obtained from cells from sputum and pleural effusions stained with different fluorescent dyes and fixed by alternate methods. The spectra were referenced to a standard allowing for fluorescence comparisons of unstained and stained cells under various conditions. The metachromasia of acridine orange-stained cells offers nuclear/cytoplasmic differentiation in a single stain; mithramycin and propidium iodide do not. Unstained cells have an appreciable amount of green (546 nm) fluorescence, as does Carbowax in Saccomanno's preservative. Cytoplasm stained with acidine orange also has appreciable green fluorescence. Consequently, cells with much cytoplasm have high total fluorescence. Cytoplasmic fluorescence is negligible with mithramycin or propidium iodide. The metachromasia of acridine orange-stained cells is altered by alcohol and Carbowax levels in fixatives, keeping other factors constant.  相似文献   

5.
The ability of the highly condensed chromatin of small thymocyte nuclei and the more loosely organized chromatin of hepatocyte nuclei to interact with nine DNA-specific fluorochromes was assessed by microfluorometry. Although the results obtained with five of the fluorochromes - mithramycin, 7-aminoactinomycin D, Hoechst 33258, DAPI, and propidium iodide - were found to be virtually unaffected by differences in the degree of condensation of the chromatin, the values obtained with the remaining fluorochromes - proflavine, quinacrine mustard, berberine sulfate, and pyronin Y - appeared to be affected significantly by organizational differences of the chromatin. All of the latter "structural probes," except quinacrine mustard, produced fluorescence values which were higher in the 2c nuclei of hepatocytes than in the nuclei of small thymocytes. Quinacrine mustard yielded higher values in thymocyte nuclei; and in the hepatocyte polyploid series (2, 4, and 8c), it did not produce the expected multiples of the 2c value. Pretreatment of the two types of nuclei with RNase affected their total fluorescence in unpredictable ways. While RNase extraction lessened the differences between thymocyte and 2c hepatocyte nuclei stained with propidium iodide, Hoechst 33258, proflavine, and berberine sulfate, it increased the differences between nuclei stained with mithramycin, quinacrine mustard, pyronin Y, and 7-aminoactinomycin D. The ability of RNA-depleted chromatin to interact with various types of fluorochromes might be a useful parameter in subsequent studies of chromatin organization.  相似文献   

6.
Ehrlich ascites tumor cells were permeabilized using low concentrations of digitonin, 8 micrograms/10(6) cells. Permeabilization was monitored by the assay of lactate dehydrogenase released into the incubation medium and of hexokinase partially bound to mitochondria. Integrity of the cellular organelles was unaffected as determined by assay of the mitochondrial enzyme glutamate dehydrogenase. Cells were stained with rhodamine 123 as a mitochondrial specific dye and propidium iodide/mithramycin as DNA specific dyes. The green fluorescence of bound rhodamine 123 versus red fluorescence of DNA in individual cells was analysed by dual parameter flow cytometry. Incubation of cells with inhibitors of mitochondrial energy metabolism, such as, potassium cyanide and carbonyl cyanide m-chlorophenylhydrazone abolished binding of rhodamine 123. Flow cytometric data allowed a correlation between cell position in the mitotic cycle with total mitochondrial activity. In addition, comparison of the characteristics of propidium iodide and ethidium bromide staining further elucidated the molecular basis of the staining with the positively-charged fluorescent dye rhodamine 123.  相似文献   

7.
Kong JY  Rabkin SW 《Tissue & cell》1999,31(5):473-479
The objective of this study was to examine the hypothesis that the alterations of cardiac nuclei, that has been noted in some cardiomyopathies, can be produced by palmitate, a saturated fatty acid present in high circulating concentrations in patients with conditions associated with a high probability of developing cardiomyopathy. Cardiomyocytes isolated from embryonic chick ventricle were maintained in culture for 72 h and then treated with palmitate, 100 microM for 24 h. Cells were stained with acridine orange or Giemsa and examined microscopically. Cell size and nuclear size were examined by forward light scatter during flow cytometry. Cells were permeabilized and their nuclei were stained with propidium iodide and examined by flow cytometry on populations of 10,000 cells. Cardiomyocytes treated with palmitate displayed changes in nuclear appearance as nuclei were larger, relative to cell size, with more intense acridine orange staining in a peripheral location. Nucleoli were often disrupted. Palmitate produced a significant (P < 0.001) and 17% increase in nuclear size compared to untreated cells using flow cytometry analysing forward light scatter to estimate nuclear and whole cells size. There were no significant changes in the size of the whole cell and ratio of nucleus to whole cell was significantly (P < 0.01) increased compared to control cells. Fluorescent activating cell sorting analysis of propidium iodide stained nuclei demonstrated that the nuclear enlargement was not due to cell mitosis as the proportion of nuclei in Go/G1, S or M was not changed by palmitate. In summary, these studies identify that palmitate can induce structural abnormalities of cardiomyocytes nuclei by producing increased nuclear size and nucleolar destruction.  相似文献   

8.
Comparative Study of Microsporidian Spores by Flow Cytometric Analysis   总被引:2,自引:0,他引:2  
ABSTRACT. Spore suspensions of microsporidian parasites of fish (Microsporidium ovoideum, Glugea stephani, Glugea atherinae and Spraguea lophii ) have been analyzed by flow cytometry. Spore nuclei were dyed either by propidium iodide or bis-benzimide (Hoechst 33342). By observation of forward light scatter and fluorescence the four species could be distinguished and the mono- and diplokaryotic populations of S. lophii identified. Staining of DNA by bis-benzimide was better and easier than propidium iodide. Forward light scatter and fluorescence values were characteristic of each species and remained unchanged throughout the year, so flow cytometry can be used for distinction of spores of some microsporidian parasites once their flow cytometric parameters are known. However, special care has to be taken in tool calibration and material preparation for analysis because of the high precision of the technique.  相似文献   

9.
Circulating hemocytes of the silkworm can be classified by fluorescence microscopy following staining with acridine orange and propidium iodide. Based on their fluorescence characteristics, three groups of circulating hemocytes can be distinguished. The first group, granulocytes and spherulocytes, is positive for acridine orange and contain bright green fluorescent granules when observed by fluorescence microscopy. In granulocytes, these green granules are heterogeneous and relatively small. In contrast, in spherulocytes, the green granules appear more homogenous and larger. The second group of hemocytes consists of prohemocytes and plasmatocytes. These cells appear faint green following staining with acridine orange and do not contain any green fluorescent granules in the cytoplasm. Prohemocytes are round, and their nuclei are dark and clear within a background of faint green fluorescence. Inside the nucleus there are one or two small bright green fluorescent bodies. Plasmatocytes are irregularly shaped and their nuclei are invisible. Oenocytoids belong to the third group, and their nuclei are positive for propidium iodide. Therefore, all five types of circulating hemocytes of the silkworm, including many peculiar ones that are difficult to identify by light microscopy, can now be easily classified by fluorescence microscopy following staining with acridine orange and propidium iodide. In addition, we show that hemocytes positive for acridine orange and propidium iodide are in fact living cells based on assays for hemocyte composition, phagocytosis, and mitochondrial enzyme activity.  相似文献   

10.
Several preparative techniques (detergent treatment, ethanol fixation, and hypotonic cell lysis), DNA fluorochromes, and methods of numerical analysis (planimetric or curve-fitting) were compared for the estimation of cell-cycle kinetic parameters (G1, S, G2 + M) by flow cytometry. In addition, coefficients of variation (CV), relative fluorescence, and G1/chicken erythrocyte (CRBC) ratios were measured and the effects of the proportion of cycling cells and cellular RNA content were examined. DNA fluorochromes were ranked by relative fluorescence: 4,6-diamidino-2-phenylindole > ethidium bromide/mithramycin > Hoechst 33342 > mithramycin > ethidium bromide > acridine orange approximately equal to propidium iodide. The first four (DNA-specific stains) gave lower CVs than the remainder (DNA intercalators). Detergent treatment also increased relative fluorescence and slightly lowered CVs. Comparable results were obtained for the kinetic parameters independently of stain or staining procedure; intercalating dyes with cells of a high RNA content not treated with RNAse and acridine orange being the exceptions. Of the two methods of numerical analysis, the planimetric technique was more consistant. Although highly consistant G1/CRBC ratios were obtained for any one stain, independently of staining procedures, variations between stains were noted. It is suggested that the detergent treatment in combination with DNA-specific stains provide optimal results.  相似文献   

11.
We present a new, flow cytometric method by which cells in various stages of the meiotic prophase can be quantitated and sorted in partly enriched fractions. Ovarian cells of 3-16-day-old rabbits were mechanically dispersed and fixed in ethanol and aldehydes. The cell suspension was stained with the DNA fluorochrome mithramycin and analysed and sorted in a FACS IV cell sorter according to the fluorescence and forward light scatter distribution. Cells sorted onto slides were stained with haematoxylin and eosin and differentially counted in the microscope. In the diploid fraction, preleptotene cells were more fluorescent than somatic cells. Leptotene cells were found throughout the S fraction and the tetraploid fraction. Zygotene and pachytene cells caused a major peak in the tetraploid region with 10-25% more fluorescence than somatic cells. Cells in diplotene had 5-15% more fluorescence than somatic cells. Mitotic cells were 20-40% more fluorescent than somatic cells and scattered the light more intensely than did meiotic cells with the same fluorescence.  相似文献   

12.
A one-step procedure for the preparation of nuclei for flow microfluorometric DNA analysis is described. The membranes of the cells were lysed by the non-ionic detergent Nonidet P40. Single-cell suspensions, and specimens of solid tissues obtained with fine-needle biopsy, could be prepared equally well as the nuclei of solid tissue cells were released separately. Lysis was performed in the staining solution containing either ethidium bromide or propidium iodide. Fluorescence due to fluorochrome binding to RNA, was abolished instantaneously by the presence of RNA-se, and fluorochrome binding to secondary binding sites in DNA was inhibited with NaCl. The preparation time was 10 min and the samples were stable for a minimum of 12 h. With the basic version of the method, usable, but not always optimal, results were obtained in all the cell types tested: four different mouse ascites tumors, leucocytes, bone-marrow, liver cells, human lymphomas, human carcinomas of the breast and lung, mouse mammary carcinoma and solid JB-1 tumor. The method was further optimized for the JB-1 ascites tumour. The resulting two modified techniques are described. Differences in the staining of leucocytes with the analogues ethidium bromide and propidium iodide were demonstrated.  相似文献   

13.
A mitotic cell subset has been identified with nuclear light scatter. Colcemid-treated T-47D human breast cancer cells were permeabilised, stained with ethidium bromide, and analysed by flow cytometry. Cells with G2M DNA content exhibited a unimodal distribution for DNA fluorescence and forward scatter, but two peaks were discernible with 90 degrees light scatter. A discrete low-scattering cell cluster could be distinguished from the G2 cell subset on two-dimensional contour plots of 90 degrees light scatter vs. DNA fluorescence; this cluster was reproduced by mitotic shake-off experiments and varied quantitatively with mitotic indices determined either by microscopy or by stathmokinetic cell-cycle analysis of DNA fluorescence. Cell sorting confirmed that the low-scattering cell cluster comprised predominantly metaphase and anaphase cells. Identification of mitotic cells with this one-step technique enables rapid analysis of drug-induced cell-cycle delay in cell populations with different rates of cell-cycle traverse. Hence, vincristine-induced cytostasis is shown to arise in part because of premitotic G2 arrest, whereas etoposide is shown to affect cycling cells with equal sensitivity in quiescent and activated cell populations. The use of light scatter to discriminate mitotic cells in this way facilitates analysis of drug-induced cell-cycle delay and supplements the information obtainable by conventional cell-cycle analysis.  相似文献   

14.
This report describes a method by which mitotic cells were isolated from nonsynchronized Cloudman melanoma cells that had been pulse labeled with 5-bromo-2'-deoxyuridine (BrdUrd) and double-stained with a fluoresceinated monoclonal antibody to BrdUrd and with propidium iodide (PI). In initial experiments, melanoma cells were first pulse labeled with BrdUrd, treated with prostaglandin E1 (PGE1 10 micrograms/m1) or vehicle (0.1% ethanol) for up to 24 hours, then stained with anti-BrdUrd and PI. PGE1-treated cells monitored at 3-hour intervals were observed to migrate from S phase to G2 phase, then, enigmatically, back into the late S phase region of the distribution. In other experiments, cells treated with PGE1 were pulse labeled with BrdUrd at the end of the treatment period and harvested. In these experiments, there was a small, discrete subpopulation of cells within the late S phase region of the DNA distribution that was negative for anti-BrdUrd. This subpopulation of cells was sorted and examined by light microscopy. We observed that 95% of these BrdUrd-negative "S phase" cells were mitotic cells. Since mitotic cells and G2 cells have equivalent amounts of DNA, the reduced red fluorescence exhibited by these cells may be due to a greater sensitivity to denaturation, which has been described for DNA of mitotic cells, and would account for the phenomenon of cells appearing to move "backwards" in the cell cycle. This report indicates that although the BrdUrd/PI method can further define the cell cycle into four compartments, it can also lead to over-estimation of S phase cells in kinetic studies because of contaminating mitotic cells.  相似文献   

15.
A new method is described for flow cytometric cell cycle analysis of normal and psoriatic human epidermis, based on non-enzymatic tissue disaggregation. The epidermis was isolated by treatment with acetic acid and stored by freezing. After thawing, the epidermis was disintegrated into a nuclear suspension by 3 steps: incubation with dithiotreitol, whirling in a buffer (pH 7.4) with the non-ionic detergent Nonidet P40, EGTA, RNase and spermine, and whirling after addition of citric acid to a final concentration of 1% (pH 2.4). The suspension was stained with propidium iodide and filtered before flow cytometry. The yield of suspended nuclei was approximately 70% of the original number of cells in the tissue. The detergent/citric acid method was found to be preferable to an ultrasonication method previously used on human epidermis. All cell cycle and cell maturation stages were represented in the detergent/citric acid suspension, in contrast to the selection of immature G1, S and G2 stages with enzymatic methods. In the analysis of psoriatic epidermis inadequately matured (parakeratotic) cells were present in the suspension and had to be discriminated by gating on light scattering intensity, as they were not susceptible to lysis and did not stain properly. The fraction of S phase nuclei was on average 1.9% in normal and 7.7% in psoriatic epidermis, thus confirming the results of other investigators using enzymes. The presence of mitotic figures in the suspension was demonstrated by flow sorting. In this way the mitotic fraction was estimated to 0.06% in normal and 0.22% in psoriatic epidermis, confirming histological data of other investigators.  相似文献   

16.
Several subcompartments of the cell cycle in addition to the G1-, S-, and G2-phases usually observed were identified by simultaneous flow cytometric measurements of ethidium bromide fluorescence and side scatter intensity of cell nuclei. Metaphase cells and very early G1-phase cells (G1A) with low side scatter intensities were discriminated from interphase cells with high side scatter intensities. The reason for the various side scatter intensities was found to be the different structure of metaphase cells and early G1-phase cells due to chromatin condensation as shown by sorting of the respective cell nuclei. The G1A-phase could further be subdivided into two compartments with very low side scatter (G1A1) and intermediate side scatter (G1A2) intensities. Using partially synchronized cells the duration of these subcompartments of the G1-phase could be estimated. The durations of G1A1- and G1A2-phases were found to be about 10 min and 20 min, respectively, compared to the total duration of the G1-phase of about 3 h. Additional flow cytometric measurements of side scatter intensities of cell nuclei provide therefore further information on subcompartments of the G1- and G2/M-phases.  相似文献   

17.
A new procedure is reported for the staining of DNA, for flow microfluorimetry. It allows the production of stained cell nuclei in a single step by incorporating the DNA stain with a solution of the nonionic detergent Triton-X-100. This method has been found to be applicable to all DNA fluorochromes tested (ethidium bromide, propidium iodide, mithramycin, DAPI, Hoechst 33342). DNA histograms obtained in this way are comparable to those using conventional staining techniques, e.g., ethanol fixation followed by staining. Using this procedure the DNA content distribution of solid tissue or cells from suspension or monolayer cultures can be generated in less than 5 min.  相似文献   

18.
Hamster oocytes were loaded with the DNA dyes Hoechst 33342 or propidium iodide. Oocytes incubated in 10 mumol Hoechst 333421(-1) showed intracellular fluorescence within 10-20 s of exposure, as did hamster and guinea-pig spermatozoa. Impaled oocytes to which acrosome-intact hamster spermatozoa were bound before injection of Hoechst 33342 showed dye transfer to adhering spermatozoa within 2 min of injection. Oocytes loaded passively with Hoechst 33342 showed dye transfer to bound, acrosome-intact hamster spermatozoa within 10 min. On ultra-structural examination, no bound, acrosome-intact hamster spermatozoa (n = 311) were found to be fused. By contrast, oocytes incubated with 10 mumol propidium iodide l-1 showed no intracellular fluorescence after 2 h, although in approximately 50% of oocytes, fluorescence developed rapidly in the first polar body. Oocytes injected with propidium iodide showed intracellular fluorescence but no dye transfer to bound, acrosome-intact hamster spermatozoa. Oocytes impaled on pipettes containing propidium iodide showed no dye transfer to unlabelled oocytes with which they were brought into contact, whereas in similar experiments using Hoechst 33342 detectable dye transfer to an adjacent oocyte occurred within 10 min. Oocytes loaded with propidium iodide transferred propidium iodide to fusion-competent guinea-pig spermatozoa during in vitro fertilization. Normally, between 20 and 40 spermatozoa bound per oocyte, and the percentage of spermatozoa showing dye transfer varied between 0 and 41%. Dye transfer occurred within 5-45 min. Only those nuclei that showed propidium iodide transfer subsequently decondensed, suggesting that dye transfer is correlated with fusion. The presence of fused spermatozoa was confirmed by ultrastructural examination of oocytes. In separate experiments, hamster and guinea-pig spermatozoa showed detectable fluorescence from propidium iodide within 20 s of osmotic rupture or membrane stripping by detergent, suggesting the lag in dye transfer to sperm nuclei during fertilization reflects a delay in sperm-oocyte fusion following adhesion. This evidence suggests that Hoechst 33342 could be an unreliable marker for sperm-oocyte fusion in fertilization because of its capacity for passive movement from oocyte to spermatozoon. This problem can be overcome using oocytes injected with propidium iodide. With this technique, it was possible to show that fusion-competent guinea-pig spermatozoa that are held in pipettes will fuse with hamster oocytes when placed mechanically against the oocyte surface.  相似文献   

19.
Summary A dual laser beam excitation device for flow analysis of biological particles has been developed. The aid of this arrangement is to increase the range of fluorescent agents employed so far in quantitative and qualitative cytochemistry. Combining an argon ion and a helium-cadmium laser two color fluorescence measurements were performed employing propidium iodide as a DNA stain and fluorescamine which stains total protein in fixed cells. Energy transfer processes between the antibiotic and DNA specific dye mithramycin and propidium iodide both being bound to nuclear chromatin were analyzed. Utilization of energy transfer processes is generally discussed as a mean to extract information about the structure and conformation of nuclear chromatin in situ. The application of a crypton ion laser with three lines near 400 nm and a single line at 350 nm having a light output in each range of nearly one Watt gives the opportunity of utilizing DNA fluorochromes which have an excitation maximum in the deep blue region. DNA spectra are shown employing mithramycin, the benzimidazol derivative 33258 (Hoechst) and the indol compound DAPI which has a high DNA specifity combined with a great stability under UV illumination. By separating two focussed laser beams at their intereecting points with the liquid sample stream the trajectory of each flowing cell crosses the beams sequentially, which causes a solitary dual excitation of each cell. The advantages of a solitary excitation device compared with a simultaneous one is discussed.This work has been supported by the ministry of research and technology (FRG), contract No. 01VH015-B13MT 225a  相似文献   

20.
Methods based on flow cytometry and sorting, autoradiography, and cloning were used to evaluate the potential for the enumeration of 6-thioguanine-resistant human peripheral blood lymphocytes assumed to be deficient with respect to the enzyme hypoxanthine-guanine-phosphoribosyl-transferase. Flow cytometric sorting of proliferating cells in the late S- and the G2-stages by means of DNA content, as measured by propidium iodide fluorescence, enabled an enrichment of variant cells to about 99%. The main source of false events was contaminating doublets of G0/G1 cells appearing in the sorting region. Doublet discrimination measured as the difference between pulse height and area (Ortho-50) accomplished no further improvement. A combination of propidium iodide fluorescence and bromodeoxyuridine incorporation, measured by fluorescent anti-bromodeoxyuridine-DNA antibodies, allowed flow cytometric enrichment to about 99.99% of variant cells. By sorting of 3H-thymidine-labeled cell nuclei from the late S- and the G2-phases and subsequent autoradiographic evaluation, partly resistant variants could be discriminated; variant frequencies of the same magnitude as for the cell cloning methods were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号