共查询到20条相似文献,搜索用时 0 毫秒
1.
Human defensins play multiple roles in innate immunity including direct antimicrobial killing and immunomodulatory activity. They have three disulfide bridges which contribute to the stability of three anti-parallel β-strands. The exact role of disulfide bridges and canonical β-structure in the antimicrobial action is not yet fully understood. In this study, we have explored the antimicrobial activity of human β-defensin 4 (HBD4) analogs that differ in the number and connectivity of disulfide bridges. The cysteine framework was similar to the disulfide bridges present in μ-conotoxins, an unrelated class of peptide toxins. All the analogs possessed enhanced antimicrobial potency as compared to native HBD4. Among the analogs, the single disulfide bridged peptide showed maximum potency. However, there were no marked differences in the secondary structure of the analogs. Subtle variations were observed in the localization and membrane interaction of the analogs with bacteria and Candida albicans, suggesting a role for disulfide bridges in modulating their antimicrobial action. All analogs accumulated in the cytosol where they can bind to anionic molecules such as nucleic acids which would affect several cellular processes leading to cell death. Our study strongly suggests that native disulfide bridges or the canonical β-strands in defensins have not evolved for maximal activity but they play important roles in determining their antimicrobial potency. 相似文献
2.
Background
Human β-defensin-2 (HBD2) is an antimicrobial peptide implicated in the pathogenesis of inflammatory bowel disease (IBD). Low copy number and concomitant low mRNA expression of the HBD2 gene have been implicated in susceptibility to colonic Crohn''s Disease (CD). We investigated the colonic distribution of HBD2 mRNA expression, and the contributions of genetic and environmental factors on HBD2 protein production.Methodology/Principal Findings
We examined HBD2 mRNA expression at three colonic locations by microarray analysis of biopsies from 151 patients (53 CD, 67 ulcerative colitis [UC], 31 controls). We investigated environmental and genetic influences on HBD2 protein production using ex vivo cultured sigmoid colon biopsies from 69 patients (22 CD, 26 UC, 21 controls) stimulated with lipopolysaccharide (LPS) and/or nicotine for 24 hours. HBD2 and cytokines were measured in culture supernatants. Using DNA samples from these patients, regions in the HBD2 gene promoter were sequenced for NF-κB binding-sites and HBD2 gene copy number was determined. HBD2 mRNA expression was highest in inflamed (vs. uninflamed p = 0.0122) ascending colon in CD and in inflamed (vs. uninflamed p<0.0001) sigmoid colon in UC. HBD2 protein production was increased in inflamed UC biopsies (p = 0.0078). There was no difference in HBD2 protein production from unstimulated biopsies of CD, UC and controls. LPS-induced HBD2 production was significantly increased in CD (p = 0.0375) but not UC (p = 0.2017); this LPS-induced response was augmented by nicotine in UC (p = 0.0308) but not CD (p = 0.6872). Nicotine alone did not affect HBD2 production. HBD2 production correlated with IL8 production in UC (p<0.001) and with IL10 in CD (p<0.05). Variations in the HBD2 promoter and HBD2 gene copy number did not affect HBD2 production.Significance/Conclusions
Colonic HBD2 was dysregulated at mRNA and protein level in IBD. Inflammatory status and stimulus but not germline variations influenced these changes. 相似文献3.
Chadebech P Goidin D Jacquet C Viac J Schmitt D Staquet MJ 《Cell biology and toxicology》2003,19(5):313-324
Defensins have been identified as key elements of innate immunity against microbial infections. In the present study, human beta-defensin-2 (hBD-2) mRNA and peptide expression were evaluated by RT-PCR and Western blotting in normal human keratinocytes, in function of their stage of differentiation. In proliferating, non-differentiating keratinocytes generated in serum-free, low-calcium medium, a very low hBD-2 mRNA expression was found. A significantly higher expression was detected in high-calcium cultivated keratinocytes grown either as monolayers or as multilayers under submerged conditions. In an air-liquid interface culture of keratinocytes, allowing epidermis to be reconstructed, hBD-2 mRNA expression level was significantly higher than in the other conditions and displayed inter-individual variability as observed in native epidermis. The peptide was detected only in reconstructed epidermis. These results indicate that hBD-2 gene expression in normal human keratinocytes is dependent upon their stage of differentiation. The level of expression of hBD-1 mRNA was lower and that of hBD-3 was higher than that of hBD-2 in reconstructed epidermis. Exposure of reconstructed epidermis to bacterial lipopolysaccharide (LPS) resulted in an average 4-fold increase in hBD-2 mRNA 18 h after challenge, but not of hBD-1 and hBD-3 gene expression. These results show the selective regulation of hBD-2-encoding gene in an organotypic epidermal model, in response to LPS. They also provide evidence that in vitro reconstructed epidermis represents a useful model for studying regulation of expression of beta-defensins after skin challenge with pathogenic microorganisms in conditions as close as possible to the in vivo situation. 相似文献
4.
5.
The impairment of the respiratory chain or defects in the detoxification system can decrease electron transfer efficiency, reduce ATP production, and increase reactive oxygen species (ROS) production by mitochondria. Accumulation of ROS results in oxidative stress, a hallmark of neurodegenerative diseases such as Alzheimer's disease (AD). β-amyloid has been implicated in the pathogenesis of AD, and its accumulation may lead to degeneration of neuronal or non-neuronal cells. There is evidence that β-amyloid interacts with mitochondria but little is known concerning the significance of this interaction in the physiopathology of AD. This review explores possible mechanisms of β-amyloid-induced mitochondrial toxicity. 相似文献
6.
Jürgen Harder Reiner Siebert Yanming Zhang Peter Matthiesen Enno Christophers Brigitte Schlegelberger Jens-M. Schröder 《Genomics》1997,46(3):472
We recently reported the isolation of human β-defensin-2 (hBD-2), a novel epithelia-derived peptide antibiotic belonging to the β-defensin family. hBD-2 is expressed in skin and epithelia of the airway system, where it is believed to contribute to its antimicrobial defense. By fluorescencein situhybridization using a hBD-2 genomic DNA probe and subsequent fluorescence R-banding, the hBD-2 gene (HGMW-approved symbol DEFB2) was assigned to human chromosome region 8p22–p23.1. PCR with a set of CEPH YAC clones spanning this chromosomal region revealed CEPH YACs 773G4, 920D12, and 820B4 to contain the hBD-2 gene. Relying on the preexisting physical maps of 8p22–p23.1, the hBD-2 gene was mapped in close proximity to D8S1993 (WI-9956) within the interval flanked by D8S552 and D8S1130 (CHLC.GATA25C10). The fact that all currently described genes encoding defensins map to chromosome 8p21–pter suggests that a gene cluster in this chromosomal region may play a major role in antimicrobial defense. 相似文献
7.
We established a real-time quantitative RT-PCR assay that permits rapid and sensitive screening of foods that increase the human β-defensin-2 (hBD-2) mRNA level in human foreskin keratinocyte (HFK) cells. The range of hBD-2 mRNA concentrations suitable for the assay was between 8 × 10?11 M (39-cycle amplification) and 8 × 10?18 M (13-cycle amplification) as calibrated with standard hBD-2 cDNA. With this assay system, it was found that the stimulation of HFK cells by the addition of yeast powder at 5 g l?1 to the culture medium resulted in about 40 times increase in hBD-2 mRNA level, though stimulation with Escherichia coli attained the same level of induction. The active component of yeast was insoluble in water. Simultaneous co-stimulation of HFK cells with E. coli and grains, such as amaranth, millet, soybean and sesame, boosted hBD-2 mRNA induction significantly (6.1, 2.5, 3.3, and 3.3 times, respectively) above the level attained with E. coli alone. The results of successive fractionations of amaranth grain powder by ether extraction and amylase digestion showed that the boosting activity of amaranth grain resided in its insoluble fraction. Significant boosting of hBD-2 mRNA induction in epithelial cells with foods opens a new possibility of developing functional foods that can protect the human body against microbial infection at the oral cavity, skin, and respiratory tract among others. 相似文献
8.
Anna E. Nikitkova Elaine M. Haase Frank A. Scannapieco 《Applied and environmental microbiology》2013,79(2):416-423
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation. 相似文献
9.
10.
Dong Li Yu Lu Peng Sun Li-Xing Feng Miao Liu Li-Hong Hu Wan-Ying Wu Bao-Hong Jiang Min Yang Xiao-Bo Qu De-An Guo Xuan Liu 《PloS one》2015,10(10)
Fangchinoline is a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae S. Moore. Fangchinoline and its structure analogue, tetrandrine, exhibited direct binding affinity with recombinant human proteasome β1 subunit and also inhibited its activity in vitro. In cultured prostate PC-3 cells and LnCap cells, fangchinoline could dose-dependently inhibit cell proliferation and caspase-like activity of cellular proteasome which was mediated by proteasome β1 subunit. The inhibitive effect of fangchinoline on caspase-like activity of proteasome was also observed in purified human erythrocyte 20S proteasome. In PC-3 cells, fangchinoline induced cell cycle arrest at G0/G1 phase and apoptosis. Treatment of PC-3 tumor-bearing nude mice with fangchinoline inhibited tumor growth, induced apoptosis and also caused decrease in proteasome activities in tumor xenografts. Dose-dependent and time-dependent accumulation of ubiquitinated proteins and important proteasome substrates such as p27, Bax and IκB-α were observed in fangchinoline-treated cells. Over-expression of proteasome β1 subunit by plasmid transfection increased sensitivity of cells to the cytotoxicity of fangchinoline while knockdown of proteasome β1 subunit ameliorated cytotoxicity of fangchinoline in PC-3 cells. Results of the present study suggested that proteasome inhibition was involved in the anti-cancer effects of fangchinoline. Fangchinoline and its structure analogues might be new natural proteasome inhibitors targeting β1 subunit. 相似文献
11.
Hirohisa Okabe Hiroki Kinoshita Katsunori Imai Shigeki Nakagawa Takaaki Higashi Kota Arima Hideaki Uchiyama Toru Ikegami Norifumi Harimoto Shinji Itoh Takatoshi Ishiko Tomoharu Yoshizumi Toru Beppu Satdarshan P. S. Monga Hideo Baba Yoshihiko Maehara 《PloS one》2016,11(4)
Aimβ-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC.MethodsGene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues.ResultsSixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001).ConclusionThis study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism. 相似文献
12.
Cristina Municio Yolanda Alvarez Olimpio Montero Etzel Hugo Mario Rodríguez Esther Domingo Sara Alonso Nieves Fernández Mariano Sánchez Crespo 《PloS one》2013,8(4)
Background
β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions.Principal Findings
Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan.Conclusions
These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i) an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii) a response primed by TLR4-dependent signals, and iii) a response dependent on M-CSF and dectin-1 B isoform expression that mainly signals through the dectin-1 B/spleen tyrosine kinase/cytosolic phospholipase A2 route. 相似文献13.
A marked increase in the isolation of Group B streptococci from patients in the University Hospital, Saskatoon, has been noted over the past four years, and no change in technical methods has been found to explain this increase. Group B streptococci have been isolated from 242 patients, in 53 of whom the streptococcus was considered the cause of the infection. Infections occurred predominantly in the urinary tract, female genital tract and upper respiratory tract. There was a low incidence of infections in newborn infants, and only four infections were in patients under 1 year old. Infections were more frequent in women than men and in patients over 40 years of age. No particular affinity of Group B streptococci for diabetics was demonstrated. 相似文献
14.
15.
Human β-endorphin (15 μg) administered intracisternally increased concentrations of serotonin (5HT) and its metabolite, 5-hydroxyindoleacetic. acid (5-HIAA), in brain stem and hypothalamus and decreased 5-HIAA concentrations in hippocampus. These data are compatible with the hypothesis that β-endorphin increases 5HT turnover in brain stem and hypothalamus and decreases 5HT turnover in hippocampus. β-endorphin increased in brain stem and hypothalamus and decreased in hippocampus the rate of pargyline-induced decline of 5-HIAA. β-endorphin decreased the rate of pargyline-induced accumulation of 5HT in all these brain regions. The probenecid-induced accumulation of 5-HIAA in brain stem was decreased by β-endorphin. These data are compatible with the hypothesis that β-endorphin increases release of 5HT from neurons in brain stem and hypothalamus and decreases release of 5HT from neurons in hippocampus. The data require further a hypothesis that β-endorphin either decreases 5HT reuptake in these three brain regions or increases 5-HIAA egress from brain. 相似文献
16.
Diverse effects on the native β-sheet of the human prion protein due to disease-associated mutations
Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrP(C)) to a misfolded pathogenic form (PrP(Sc)). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I, and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human PrP, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation. 相似文献
17.
Experimental support for the use of fluid aqueous organic solvent systems and subzero temperatures in mechanistic studies of β-galactosidase is presented. The enzyme was stable and retained catalytic activity and structural integrity in 50% aqueous dimethyl sulfoxide and 60% aqueous methanol at 0°C; at lower temperatures higher concentrations of cosolvent may be successfully used. The effects of dimethyl sulfoxide on the catalytic and structural properties of the enzyme were investigated in detail. For the β-galactoside-catalyzed h ydrolysis ofo-nitrophenyl-β-D-galactoside the value ofk cat decreased in a linear manner with increasing cosolvent concentration, whereasK m increased exponentially. The decrease ink cat paralleled the decrease in water concentration, consistent with rate-limiting hydrolysis of a galactosylenzyme intermediate. The increase inK m is attributed to less favorable partitioning of the substrate to the active site in the cryosolvent compared to aqueous solution. ThepH*-rate profile for this reaction at 0°C in 50% dimethyl sulfoxide was similar to that in aqueous solution, withpK*1=5.8 andpK*2=8.0. Linear Arrhenius plots, with energies of activation of 13.9 and 16.0 kcal mol?1, respectively, were obtained for the β-galactosidase-catalyzed hydrolysis ofo-nitrophenyl- andp-nitrophenyl-β-D-galactosides in 50% dimethyl sulfoxide at temperatures to ?57°C. Examination of the intrinsic fluorescence and ultraviolet spectra of the enzyme as a function of increasing cosolvent concentration showed no evidence for structural perturbation up to and including 50% dimethyl sulfoxide at 0°C. We conclude that these cryosolvent systems are suitable for mechanistic investigations of β-galactosidase, in particular for trapping intermediates at subzero temperatures. 相似文献
18.
Antimicrobial Activity of Inducible Human β Defensin-2 Against Mycoplasma pneumoniae 总被引:3,自引:0,他引:3
Defensins in innate immunity are known to play critical roles to protect the host from infection by invasive microbes, including
Gram-positive and -negative bacteria. However, little is known about the interactions between defensins and mycoplasmas. Human
β defensin (hBD)-2 and hBD-3, but not hBD-1, were found to exert strikingly antimicrobial activity against Mycoplasma pneumoniae. To elucidate the role of defensins in M. pneumoniae infection, a human pulmonary squamous cell line EBC-1 was stimulated with M. pneumoniae and interleukin (IL)-1β. hBD-2 was markedly upregulated by IL-1β as well as M. pneumoniae, but neither hBD-1 nor hBD-3 was apparently upregulated. Thus, the results suggest that inducible hBD-2 would play a critical
role in the protection of M. pneumoniae infection. 相似文献
19.
Kazuhiro Ozawa Ryoya Niki Shunrokuro Arima 《Bioscience, biotechnology, and biochemistry》2013,77(11):3123-3129
The effects of caseins on the rheological properties of κ-carrageenan-calcium gel was investigated by measuring the gel breaking strength. The existence of β-casein in the system promoted the gelation of κ-carrageenan in the presence of calcium ion. Beta-casein increased the strength of calcium gels of κ-carrageenan with increasing NaCl concentration up to 80 mM and strengthened the κ-carrageenan-calcium gel at neutral pH. The values obtained from the slopes of the logarithmic plots of the gel strength versus concentration were 2.15 for κ-carrageenan gel and 2.27 for a β-casein-κcarrageenan mixture gel, suggesting that β-casein may participate in the gelation of κ-carrageenan through the mediation of calcium ions. 相似文献
20.
Nobuyasu Tanahashi Yutaka Watanabe Fujizo Yamada 《Bioscience, biotechnology, and biochemistry》2013,77(8):1707-1710
Purification and characterization of β2-microglobulin from human urine was performed. The yield was 30.1%, and 150.4 mg of β2-microglobulin was obtained. The final preparation of β2-microglobulin obtained showed three bands on disc gel electrophoresis at pH 9.5, and all of them have immunological activity. However, these three bands migrated as a single band on disc gel electrophoresis at pH 4.3. It is concluded that the three bands observed on disc gel electrophoresis at pH 9.5 were charge isomers. The isoelectric points of isomers were determined by isotachophoresis and two of them were 5.4 and 5.9 respectively, while the other one was not determined. 相似文献