共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mammals with excess insulin-like growth factor 2 (IGFII) during embryogenesis have developmental defects that can lead to perinatal lethality. In adults, higher levels of IGFII increase the risk of cancer and may accelerate the development of atherosclerosis. IGFII can be increased as a consequence of genetic abnormalities and polymorphisms, and through epigenetic mechanisms. Decreasing IGFII levels thus can benefit human health. Degradation of IGFII is mediated by the insulin-like growth factor type 2 receptor (IGF2R). The growth-stimulatory effects of IGFII, and their attenuation by the IGF2R, are considered important for the evolution of IGFII/IGF2R interaction and imprinting. The IGFII/IGF2R interactions during development have been previously examined in mice carrying knock-out alleles of these genes or their regulators. Here we tested the ability of the IGF2R to ameliorate the negative effects of IGFII on development and survival in crosses between Igf2 and Igf2r transgenic mice, which may be a better model for natural variations in the levels of these genes' products. A fraction of hemizygous Igf2 transgenic mice die in the perinatal period, some with cleft palates, with an ensuing reduction in the frequency of transgenic mice among the surviving offspring. The Igf2r transgene lowers the frequency of cleft palate and increases the percentage of Igf2 transgenic mice among the live offspring. These findings draw attention to the fact that Igf2-associated lethality selects for the retention of IGFII/IGF2R binding in present day mammals; it may have played a similar role in the acquisition of IGFII/IGF2R binding in ancient mammals. 相似文献
3.
4.
Ishizaki T Yoshie M Yaginuma Y Tanaka T Ogawa K 《The Journal of biological chemistry》2003,278(8):6222-6228
IGFII, the peptide encoded by the Igf2 gene, is a broad spectrum mitogen with important roles in prenatal growth as well as cancer progression. Igf2 is transcribed from the paternally inherited allele, whereas the linked H19 is transcribed from the maternal allele. Igf2 imprinting is thought to be maintained by differentially methylated regions (DMRs) located at multiple sites such as upstream of H19 and Igf2 and within Kvlqt1 loci. Biallelic expression (loss of imprinting (LOI)) of Igf2 is frequently observed in cancers, and a subset of Wilms' and intestinal tumors have been shown to exhibit abnormal methylation at H19DMR associated with loss of maternal H19 expression, but it is not known whether such changes are common in other neoplasms. Because cancers consist of diverse cell populations with and without Igf2 LOI, we established four independent monoclonal cell lines with Igf2 LOI from mouse hepatic tumors. We here demonstrate retention of normal differential methylation at H19, Igf2, or Kvlqt1 DMR by all of the cell lines. Furthermore, H19 was found to be expressed exclusively from the maternal allele, and levels of CTCF, a multifunctional nuclear factor that has an important role in the Igf2 imprinting, were comparable with those in normal hepatic tissues with no mutational changes detected. These data indicate that Igf2 LOI in tumor cells is not necessarily linked to abnormal methylation at H19, Igf2, or Kvlqt1 loci. 相似文献
5.
The cation independent mannose 6-phosphate/insulin-like growth factor 2 receptor (IGF2R) functions in the transportation and regulation of insulin-like growth factor 2 (IGF2) and mannose 6-phosphate modified proteins. The relative and specific titration of IGF2 by high affinity binding of IGF2R represents a mechanism that supports the parental conflict theory of genomic imprinting. Imprinting of Igf2 (paternal allele expressed) and Igf2r (maternal allele expressed) arose to regulate the relative supply of both proteins. Experiments in the mouse have established that loss of the maternal allele of Igf2r results in disproportionate growth and peri-natal lethality. In order to systematically investigate the consequences of loss of function and of hypomorphic alleles of Igf2r on growth functions, we introduced a conditional human IGF2R exon 3–48 cDNA into the intron 2 region of murine Igf2r. Here we show that the knock-in construct resulted in over-growth when the humanised Igf2r allele was maternally transmitted, a phenotype that was rescued by either paternal transmission of the humanised allele, expression of a wild-type paternal allele or loss of function of Igf2. We also show that expression of IGF2R protein was reduced to less than 50% overall in tissues previously known to be Igf2 growth dependent. This occurred despite the detection of mouse derived peptides, suggesting that trans-splicing of the knock-in human cDNA with the endogenous maternal mouse Igf2r allele. The phenotype following maternal transmission of the humanised allele resulted in overgrowth of the embryo, heart and placenta with partial peri-natal lethality, suggesting that further generation of hypomorphic Igf2r alleles are likely to be at the borderline of maintaining Igf2 dependent viability. 相似文献
6.
Imprinted genes play important roles in the mammalian development. In the parthenogenetic embryos (PE) there is only expression of maternally expressed genes. Therefore, PEs are appropriate experimental models to study genomic imprinting controlling mechanisms. The maternally expressed H19 and paternally expressed Igf2 are reciprocally imprinted genes in normal embryos. Here we studied effect of transforming growth factor alpha (TGFalpha) treatment in vitro (10 ng/ml at the morula stage) on the expression of Igf2/H19 locus in mice PE (9.5-days of gestation, 25 somites) and their placentas (PP). Using RT-PCR we showed that TGFalpha reactivated maternally imprinted Igf2 gene in parthenogenetic embryos and placentas. In spite of similar Tgfalpha expression in the pre-implantation stages, its expression in the 9.5-day parthenogenetic embryos is significantly less than in normal embryos (NE). In our experiments it was shown that reactivation of Igf2 gene occurred independently of H19 gene. In vitro TGFalpha treatment of mouse PE reactivated paternally expressed Igf2 gene in the PE and PP. In the PE and PP both Igf2 and H19 were expressed. It seems that TGFalpha can play an important role as modulator of the Igf2/H19 locus. 相似文献
7.
Weber M Hagège H Murrell A Brunel C Reik W Cathala G Forné T 《Molecular and cellular biology》2003,23(24):8953-8959
Genomic imprinting at the Igf2/H19 locus originates from allele-specific DNA methylation, which modifies the affinity of some proteins for their target sequences. Here, we show that AT-rich DNA sequences located in the vicinity of previously characterized differentially methylated regions (DMRs) of the imprinted Igf2 gene are conserved between mouse and human. These sequences have all the characteristics of matrix attachment regions (MARs), which are known as versatile regulatory elements involved in chromatin structure and gene expression. Combining allele-specific nuclear matrix binding assays and real-time PCR quantification, we show that retention of two of these Igf2 MARs (MAR0 and MAR2) in the nuclear matrix fraction depends on the tissue and is specific to the paternal allele. Furthermore, on this allele, the Igf2 MAR2 is functionally linked to the neighboring DMR2 while, on the maternal allele, it is controlled by the imprinting-control region. Our work clearly demonstrates that genomic imprinting controls matrix attachment regions in the Igf2 gene. 相似文献
8.
The aim of this study was to demonstrate how differential methylation imprints are established during porcine preimplantation embryo development. For the methylation analysis, the primers for the three Igf2/H19 DMRs were designed and based upon previously published sequences. The methylation marks of Igf2/H19 DMRs were analysed in sperm and MII oocytes with our results showing that these regions are fully methylated in sperm but remain unmethylated in MII oocytes. In order to identify the methylation pattern at the pronuclear stage, we indirectly compared the methylation profile of Igf2/H19 DMR3 in each zygote derived by in vitro fertilization, parthenogenesis, and androgenesis. Interestingly, this region was found to be differently methylated according to parental origins; DMR3 was hemimethylated in in vitro fertilized zygotes, fully methylated in parthenogenetic zygotes, and demethylated in androgenetic zygotes. These results indicate that the methylation mark of the paternal allele is erased by active demethylation, and that of the maternal one is de novo methylated. We further examined the methylation imprints of Igf2/H19 DMR3 during early embryonic development. The hemimethylated pattern as seen in zygotes fertilized in vitro was observed up to the 4-cell embryo stage. However, this mark was exclusively demethylated at the 8-cell stage and then restored at the morula stage. These results suggest that methylation imprints are established via dynamic changes during early embryonic development in porcine embryos. 相似文献
9.
Melissa B. Glier Ying F. Ngai Dian C. Sulistyoningrum Rika E. Aleliunas Teodoro Bottiglieri Angela M. Devlin 《Epigenetics》2013,8(1):44-53
DNA methylation is linked to homocysteine metabolism through the generation of S-adenosylmethionine (AdoMet) and S-Adenosylhomocysteine (AdoHcy). The ratio of AdoMet/AdoHcy is often considered an indicator of tissue methylation capacity. The goal of this study is to determine the relationship of tissue AdoMet and AdoHcy concentrations to allele-specific methylation and expression of genomically imprinted H19/Igf2. Expression of H19/Igf2 is regulated by a differentially methylated domain (DMD), with H19 paternally imprinted and Igf2 maternally imprinted. F1 hybrid C57BL/6J x Castaneous/EiJ (Cast) mice with (+/−), and without (+/+), heterozygous disruption of cystathionine-β-synthase (Cbs) were fed a control diet or a diet (called HH) to induce hyperhomocysteinemia and changes in tissue AdoMet and AdoHcy. F1 Cast x Cbs+/− mice fed the HH diet had significantly higher plasma total homocysteine concentrations, higher liver AdoHcy, and lower AdoMet/AdoHcy ratios and this was accompanied by lower liver maternal H19 DMD allele methylation, lower liver Igf2 mRNA levels, and loss of Igf2 maternal imprinting. In contrast, we found no significant differences in AdoMet and AdoHcy in brain between the diet groups but F1 Cast x Cbs+/− mice fed the HH diet had higher maternal H19 DMD methylation and lower H19 mRNA levels in brain. A significant negative relationship between AdoHcy and maternal H19 DMD allele methylation was found in liver but not in brain. These findings suggest the relationship of AdoMet and AdoHcy to gene-specific DNA methylation is tissue-specific and that changes in DNA methylation can occur without changes in AdoMet and AdoHcy. 相似文献
10.
Igf2 (insulin‐like growth factor 2) and H19 genes are imprinted in mammals; they are expressed unevenly from the two parental alleles. Igf2 is a growth factor expressed in most normal tissues, solely from the paternal allele. H19 gene is transcribed (but not translated to a protein) from the maternal allele. Igf2 protein is a growth factor particularly important during pregnancy, where it promotes both foetal and placental growth and also nutrient transfer from mother to offspring via the placenta. This article reviews epigenetic regulation of the Igf2/H19 gene‐cluster that leads to parent‐specific expression, with current models including parental allele‐specific DNA methylation and chromatin modifications, DNA‐binding of insulator proteins (CTCFs) and three‐dimensional partitioning of DNA in the nucleus. It is emphasized that key genomic features are conserved among mammals and have been functionally tested in mouse. ‘The enhancer competition model’, ‘the boundary model’ and ‘the chromatin‐loop model’ are three models based on differential methylation as the epigenetic mark responsible for the imprinted expression pattern. Pathways are discussed that can account for allelic methylation differences; there is a recent study that contradicts the previously accepted fact that biallelic expression is accompanied with loss of differential methylation pattern. 相似文献
11.
12.
Hansenne I Renard-Charlet C Greimers R Geenen V 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(8):4651-4657
There is some evidence that insulin-like growth factor 2 (IGF-2) may intervene in the control of T cell differentiation. To further study the immunoregulatory function of this growth factor, we analyzed the immune system of Igf2-/- mice. Phenotypically, some immunological parameters such as lymphoid organ morphology and cellularity were unaltered in Igf2-/- mice, but an increase of CD8+ cells and a decrease of B220+ cells were observed in spleen. In vitro, the development of bone marrow-derived dendritic cells was affected by the absence of Igf2 expression. After maturation, a higher percentage of immature dendritic cells was observed in Igf2-/- population, together with a secondary decrease in allogenic T cell proliferation. Activation of T cells was also affected by the lack of expression of this growth factor. The profile of B cell response in mutant mice immunized with IGF-2 evidenced a T-dependent profile of anti-IGF-2 Abs that was absent in Igf2+/+ mice. The influence of IGF-2 upon tolerance to insulin was also assessed in this model, and this showed that IGF-2 also intervenes in tolerance to insulin. The presence of a T-dependent response in Igf2-deficient mice should allow cloning of specific "forbidden" T CD4+ lymphocytes directed against IGF-2, as well as further investigation of their possible pathogenic properties against insulin family. 相似文献
13.
Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice 总被引:7,自引:0,他引:7
Wutz A Theussl HC Dausman J Jaenisch R Barlow DP Wagner EF 《Development (Cambridge, England)》2001,128(10):1881-1887
In the mouse the insulin-like growth factor receptor type 2 gene (Igf2r) is imprinted and maternally expressed. Igf2r encodes a trans-membrane receptor that transports mannose-6-phosphate tagged proteins and insulin-like growth factor 2 to lysosomes. During development the receptor reduces the amount of insulin-like growth factors and thereby decreases embryonic growth. The dosage of the gene is tightly regulated by genomic imprinting, leaving only the maternal copy of the gene active. Although the function of Igf2r in development is well established, the function of imprinting the gene remains elusive. Gene targeting experiments in mouse have demonstrated that the majority of genes are not sensitive to gene dosage, and mice heterozygous for mutations generally lack phenotypic alterations. To investigate whether reduction of Igf2r gene dosage by genomic imprinting has functional consequences for development we generated a non-imprinted allele (R2Delta). We restored biallelic expression to Igf2r by deleting a critical element for repression of the paternal allele (region 2) in mouse embryonic stem cells. Maternal inheritance of the R2Delta allele has no phenotype; however, paternal inheritance results in biallelic expression of Igf2r, which causes a 20% reduction in weight late in embryonic development that persists into adulthood. Paternal inheritance of the R2Delta allele rescues the lethality of a maternally inherited Igf2r null allele and a maternally inherited Tme (T-associated maternal effect) mutation. These data show that the biological function of imprinting Igf2r is to increase birth weight and they also establish Igf2r as the Tme gene. 相似文献
14.
15.
In the mouse, allelic dosage of the paternally expressed gene coding for insulin-like growth factor II (Igf2), from null to bi-allelic, results in dose-dependent growth, an effect which appears to be fully established during a discrete period of embryogenesis that then persists throughout life. Here, we specifically quantify the influence of Igf2 allelic dosage on the proportionality of regional embryonic growth rather than overall growth. Remarkably, preservation of allometric growth ratios between head and body regions were observed throughout development, irrespective of the range of overall growth phenotype (60-130% of wild type). Evaluation of log-log plots suggests that each allele of Igf2 expressed corresponds to the equivalent of 2-4 days of relative growth. Igf2 is predominantly expressed in extra-embryonic mesoderm (E7.5-E8.25), 24 h before alterations in cell number are known to occur in embryos with disruption of the paternally expressed allele. We hypothesized that the preservation of proportionality may result from modification of extra-embryonic development and subsequent alteration of systemic nutritional supply. Morphological analyses of chorio-allantoic and placental development between E9 and E9.5 appeared Igf2 independent. This suggests either an intrinsic but systemic Igf2-dependent activity within the embryo or a more complex developmental mechanism accounts for the proportional phenotype. Allelic IGF2 expression is subject to stochastic variation in humans, with 10% of the population estimated to be functionally bi-allelic. Evaluation of allometric growth of normal and pathological human embryos, suggest intra-uterine growth phenotypes associated with altered IGF2 imprinting are also likely to be proportionate. 相似文献
16.
17.
Igf2 imprinting in development and disease 总被引:5,自引:0,他引:5
Reik W Constancia M Dean W Davies K Bowden L Murrell A Feil R Walter J Kelsey G 《The International journal of developmental biology》2000,44(1):145-150
Igf2 is one of the first imprinted genes discovered and occupies a centre stage in the study of imprinting. This is because it has dramatic effects on the control of fetal growth, it is involved in growth disorders and in cancer, it interacts with products of other imprinted genes, and its imprinting status is under complex regulation in a cluster of tightly linked imprinted genes. Here we review briefly the key features of Igf2 imprinting in normal development and in disease, and hope to show what a fascinating subject of study this gene and its biology provides. 相似文献
18.
Koski LB Sasaki E Roberts RD Gibson J Etches RJ 《Molecular reproduction and development》2000,56(3):345-352
A polymorphism in the igf2 gene of chickens was identified using NlaIII (GenBank accession number AF218827). In some embryos, the igf2 alleles were expressed monoallelically from either maternal or paternal alleles. These data demonstrate that genomic imprinting is not confined to mammalian vertebrates and suggest that genomic imprinting evolved at an early stage of vertebrate evolution. The observations that the igf2 gene is imprinted in a minority of embryos suggest that the imprinting in birds is unrelated to embryonic growth. Genome imprinting may provide opportunities for evolution of genes in a nonexpressed state. In poultry breeding, the presence of imprinted genes may make a major contribution to unequal performance in reciprocal matings between commercial lines. 相似文献
19.
Suzuki M Solter D Watanabe T 《Biochemical and biophysical research communications》2012,418(3):439-444
The Acrodysplasia (Adp) mutation arises from the insertion of a transgene containing a mouse metallothionein-promoted bovine papilloma virus and human growth hormone-releasing factor gene. Although the transgene is not expressed, mice that are hemizygous for the transgene show skull and paw deformities when the progeny receive the transgene paternally. To elucidate the molecular mechanisms underlying the mutant phenotype and the modified transmission pattern of the Adp phenotype, a junctional fragment around the transgene integration site was cloned. The transgene was inserted into the intronic sequences between exon 3 and exon 4 of the Mdga2 gene and the degree of methylation of the transgene and the severity of the phenotype were reciprocally related in that the transgene was highly or under methylated in normal and deformed mice, respectively. Thus, methylation of the transgene appears to regulate phenotypic expression and imprinting of Adp. 相似文献
20.
Igf2 and H19 are closely linked and reciprocally expressed genes on distal chromosome 7 in the mouse. We have previously shown that a 130 kb YAC transgene contains multiple tissue-specific enhancers for expression of both genes during embryogenesis. The YAC also contains all the crucial elements responsible for initiating and maintaining appropriate parent-of-origin-specific expression of these genes at ectopic sites, with expression of Igf2 after paternal inheritance and of H19 after maternal inheritance. Located centrally between Igf2 and H19 are two prominent DNaseI hypersensitive sites, and two stretches of sequence that are conserved between mouse and human. In this study, we have deleted, from the transgene, a one kb part of the intergenic region that contains the hypersensitive sites and one of the homologous stretches. We demonstrate that this deletion results in loss of maternal Igf2 repression in skeletal muscle cells, most strikingly in the tongue, late in embryogenesis. We propose that the intergenic region functions as a tissue-specific repressor element, forming an integral part of the complex regulatory mechanism that controls monoallelic gene expression in this domain. 相似文献