首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meiotic prophase in rye was investigated by serial-section reconstruction of pollen mother cell nuclei. In the mid-late zygotene nucleus, all lateral elements were continuous from telomere to telomere, and 9–20 pairing initiation sites per bivalent were observed. Chromosome and bivalent interlockings detected during zygotene were resolved at early pachytene when pairing was completed. In the three pachytene nuclei, the relative synaptonemal complex (SC) lengths and arm ratios were found to be in good correlation with light microscopic data of pachytene bivalents. Spatial tracing of the bivalents showed that they occupy separate areas in the nucleus. Three types of recombination nodules were observed: large, ellipsoïdal and small nodules at early pachytene and irregularly shaped nodules mainly associated with chromatin at late pachytene. Their number and position along the bivalents correlated well with the number and distribution of chiasmata. The classification of the seven bivalents was based on arm ratio and heterochromatic knob distribution.  相似文献   

2.
M I Pigozzi  A J Solari 《Génome》1999,42(2):308-314
Pigeon spermatocytes were processed with a drying-down technique and their synaptonemal complex (SC) complements were analyzed by electron microscopy. The synaptonemal complex karyotype of the macrobivalents shows an excellent correspondence with the mitotic karyotype. The number and distribution of recombination nodules (RNs) were scored in complete nuclei stained with phosphotungstic acid. The average number of RNs per nucleus is 64.7. The number of nodules per bivalent shows a clear linear relationship with SC length in the 10 longest synaptonemal complexes, while the microbivalents usually bear a single RN. The location of RNs has a non-random distribution along the largest synaptonemal complexes, with lower frequencies near kinetochores and higher frequencies toward the telomeres. The ZZ bivalent is the fourth in size and shows free recombination, having on average 3.8 RNs. The mean number of nodules per cell and the mean number of nodules in the largest bivalents show very good agreement with the corresponding number of chiasmata scored in metaphase-I spermatocytes. It is concluded that the recombination nodules provide a good check for reciprocal exchanges in this and other species of birds. Additionally, a new morphology for the recombination nodules is presented, consisting of groups of electron-dense particles measuring 43 nm in diameter.  相似文献   

3.
4.
Denise Zickler 《Chromosoma》1977,61(4):289-316
Complete reconstruction of seven leptotene, six zygotene, three pachytene and three diplotene nuclei has permitted to follow the pairing process in the Ascomycete Sordaria macrospora. The seven bivalents in Sordaria can be identified by their length. The lateral components of the synaptonemal complexes (SC) are formed just after karyogamy but are discontinuous at early leptotene. Their ends are evenly distributed on the nuclear envelope. The homologous chromosomes alignment occurs at late leptotene before SC formation. The precise pairing starts when a distance of 200–300 nm is reached. Each bivalent has several independent central component initiation sites with preferentially pairing starting near the nuclear envelope. These sites are located in a constant position along the different bivalents in the 6 observed nuclei. The seven bivalents are not synchronous either in the process of alignment or in SC formation: the small chromosomes are paired first. At pachytene the SC is completed in each of the 7 bivalents. Six bivalents have one fixed and one randomly attached telomeres. The fixed end of the nucleolar organizer is the nucleolus anchored end. At diffuse stage and diplotene, only small stretches of the SC are preserved. The lateral components increase in length is approximately 34% between leptotene and pachytene. Their lengths remain constant during pachytene. From zygotene to diplotene the central components contain local thickenings (nodules). At late zygotene and pachytene each bivalent has 1 to 4 nodules and the location of at least one is constant. The total number of nodules remains constant from pachytene to diplotene and is equal to the mean total number of chiasmata. The observations provide additional insight into meiotic processes such as chromosome movements, initiation and development of the pairing sites during zygotene, the existence of fixed telomeres, the variations in SC length. The correspondence between nodules and chiasmata are discussed.  相似文献   

5.
The synaptonemal complex (SC) is the key nuclear element formed in meiotic prophase I to join 2 homologous chromosomes at the pachytene bivalent. It is a highly conserved structure that is universally present in eukaryotes. The SC is presented as a tripartite protein structure, which consists of 2 lateral elements and a central region. In insects, the central region is particularly distinct and highly ordered. This made it possible to describe the fine structure of the central region and propose a model of its architecture. Chromatid DNA is arranged in chromatin loops extending radially from the SC. The loops appear to consist of a basic chromatin fiber with a diameter of 20–30 nm. In many insect species, synaptonemal polycomplexes occur in postpachytene cells. They represent one of the possible ways of SC degradation. Another process, which occurs beyond pachytene, is the formation of proteinaceous chromatid axis, the silver-stained chromatid core. Based on results in insect models, the chromatid cores have been related to the structure and formation of the SC. Research on insect models significantly contributed to understanding individual steps of the SC formation and temporal sequence of chromosome pairing. These include the formation of lateral elements of the SC, pairing initiation, interlocking of chromosomes, and synapsis of homologous chromosomes. Attention is also given to non-homologous pairing, including synaptic adjustment, correction of pairing, and pairing of sex chromosomes. In the next section, chiasmatic and achiasmatic modes of meiosis are compared with respect to the SC formation. In the chiasmatic mode, the SCs display recombination nodules that are believed to mediate the process of recombination. These nodules were discovered in insects, and indirect evidence for their role comes from insects. Two different examples of achiasmatic meiosis, occurring in the heterogametic sex of several insect orders, are given: one involves the SC formation, whereas in the other, SCs are absent. Finally, the potential of SC karyotyping for analysis of the insect genome is discussed.  相似文献   

6.
Pairing of homologous chromosomes results in the formation of 34 synaptonemal complexes (SC) at pachytene, corresponding to the 34 bivalents at metaphase I. No multivalent associations were observed and pairing occurs two-by-two. The modified SC, which lacks a central element, does not affect the pairing process. Only one end of the SC is attached to the nuclear envelope, although either end can attach. Total SC length and the number of recombination nodules in the tetraploid were about 1.5 times greater than in the diploid.  相似文献   

7.
Chiasma distribution in the lambrush chromosomes of the chicken Gallus gallus domesticus was studied. The data of the authors show that the general pattern of chiasmata in the interstitional region of chromosomes corresponds to the Poisson distribution. However, in the telomeric and subtelomeric regions of all chicken macrochromosomes one can see chiasma as a rule. In the half of 140 microchromosomes from 24 different oocytes, there are also the telomeric chiasmata. On the basis of this observation, it may be predicted that there are hot spots of recombination near or into the telomeric GC-rich heterochromatic bands of chicken chromosomes. We suggest that these hot spots of recombination near the telomeres are a necessary facility for not only macrochromosomes but all microchromosomes as well to have at least one chiasma. The constant presence of at least one chiasma in a bivalent in needed for correct disjunction of homologous chromosomes at the first meiotic division.  相似文献   

8.
J. A. Croft  G. H. Jones 《Genetics》1989,121(2):255-262
Male meiosis in Mesostoma ehrenbergii ehrenbergii (2x = 10) is characterized by extreme restriction of chiasma formation; 3 pairs of chromosomes form bivalents at metaphase I which are associated by single very distally localized chiasma, while two pairs of chromosomes remain as unpaired univalents. Electron microscopical three-dimensional reconstruction analysis of serial sections has been applied to 20 pachytene spermatocyte nuclei. In each nucleus three short stretches of synaptonemal complex (SC) were found, confined to a localized branched lobe of the nucleus, confirming the findings of an earlier study. The majority of reconstructed nuclei show that each of the three SC segments has a single prominent recombination nodule ("late" RN) associated with it. Late RNs in this system therefore show an excellent correspondence with metaphase I chiasmata, in contrast to a previous report. M.e. ehrenbergii is therefore not an exception to the hypothesis that meiotic exchange requires a functional late RN. A few nuclei had two, one or no RNs; these presumably represent nuclei that are not at the stage of maximum RN presence. Although M. e. ehrenbergii shows pronounced chiasma localization at the light microscope level, at the ultrastructural level RNs are widely distributed along the 5-10 microns of SC formed in each bivalent, indicating that genetic exchange are not restricted to particular localized sites but occur at a large number of DNA sequence.  相似文献   

9.
Two kinds of "recombination nodules" in Neurospora crassa   总被引:2,自引:0,他引:2  
M Bojko 《Génome》1989,32(2):309-317
Two morphological types of recombination nodules, termed early and late, are recognized in Neurospora crassa. Eighty nuclei at different substages were used to determine numbers of nodules per nucleus, distribution of nodules along the nucleolus-organizing chromosome, and distribution of nodules among the two largest chromosomes. Early nodules appear at the synaptonemal complex at early zygotene and increase in number during zygotene until a dramatic reduction occurs at zygotene-pachytene transition. Thereafter early nodules are steadily eliminated until they disappear by diplotene. Late nodules are also present during zygotene. Their number doubles at the zygotene-pachytene transition and stays at this level until diplotene. The total number of nodules is rather constant through zygotene and pachytene. Distribution of bivalents with 0, 1, 2, etc. nodules follows a Poisson distribution at zygotene, but not at pachytene, where variance is less than the mean, indicating positive interference. Nodules are distributed nonrandomly along the nucleolus-organizer bivalent. The pattern differs slightly in nuclei of different origin. Nuclei with unusual synaptonemal complexes sustain normal levels of recombination by having the same amount of nodules as normal nuclei. In abnormal nuclei nodules are preferentially associated with normal segments. It is proposed that early nodules do not participate in any form of recombination but have a role in finding an appropriate site for a crossing-over event. Morphological change to the late type indicates that the site has been reached and the exchange event can be mediated by the late nodule.  相似文献   

10.
In most organisms, biological variability rests on the behaviour of the chromosomes in the meiotic context. Despite the importance of meiosis, very little is known about the meiotic behaviour of the Eimeria chromosomes. The aim of the present study is to describe the standard synaptonemal complex karyotype from Eimeria tenella oocyst spreads by electron microscopy. For that purpose, complete sets of pachytene synaptonemal complexes were obtained and the morphological pachytene karyotype was determined. The authors used a previously reported method that overcomes the difficulty of the extreme resistance of protozoan oocysts to disruption and permits the release of intact meiotic chromosomes. The chromosomes were selected under a light microscope and those selected were stained with phosphotungtic acid and studied by transmission electron microscopy. The authors confirmed 14 chromosomes, which were observed as synaptonemal complexes, and the karyotype was constructed by arranging synaptonemal complexes according to their relative lengths and kinetochore position. Components of the synaptonemal complex, lateral elements, central element, recombination nodules and kinetochore were observed. Measures of the kynetochore, width of the synaptonemal complex, diameter of the recombination nodule and length of the telomeres are given. Minimal and no significant differences were found between measures of chromosomes isolated from different Eimeria tenella strains. To the best of our knowledge, the present investigation for the first time identifies and describes the morphological characteristics of the synaptonemal complex of Eimeria tenella during the meiosis that occurs within the oocysts. In addition, the authors provide evidence of the presence of recombination nodules, suggesting that the recombination process may play an important role in the molecular evolution of this parasite.  相似文献   

11.
Electron microscopic observations of synaptonemal complexes of oocytes from chickens heterozygous for two Z-autosome translocations have been used to identify and study the pairing region of the Z and W chromosomes. The two translocations, MN t(Z;1) and t(OH 10), have breakpoints in opposite arms of the Z, and the arm having the breakpoint of MN t(Z;1) is marked by the terminal C+ band. In both translocations the short arm of the W was specifically paired with the euchromatic short arm of the Z. In MN t(Z;1) only open quadrivalents (74%) and trivalents plus W univalents (26%) were observed, whereas t(OH 10) exhibited, in addition to the prevalent quadrivalents (62%), III + I (19%) and II + II (19%) configurations. The extent of W pairing was slightly decreased in MN t(Z;1) (68.4% of the W chromosomes paired) and considerably decreased in t(OH 10) (25.3% of the W chromosomes paired). Nonhomologous synapsis occurred regularly at the quadrivalent crosspoint in MN t(Z;1) and also in bivalents from t(OH 10). The recombination nodule normally located in the terminus of the pairing region in normal ZW pairs is present in both translocations without any alteration of its frequency or its strict terminal position. Based on these data and previous observations (Rahn and Solari, 1986), it is proposed that an obligatory recombination event occurs at a locus between 0.7 microns and 0.15 microns of the paired ZW telomeres, establishing a recombinational region and a pseudoautosomal region which determine partial sex-linkage and no sex-linkage, respectively. Most of the pairing region of the ZW pair is nonhomologously paired.  相似文献   

12.
While many studies have provided significant insight into homolog pairing during meiosis, information on non-homologous pairing is much less abundant. In the present study, fluorescence in situ hybridization (FISH) was used to investigate non-homologous pairing in haploid rice during meiosis. At pachytene, non-homologous chromosomes paired and formed synaptonemal complexes. FISH analysis data indicated that chromosome pairing could be grouped into three major types: (1) single chromosome paired fold-back as the univalent structure, (2) two non-homologous chromosomes paired as the bivalent structure, and (3) three or more non-homologous chromosomes paired as the multivalent structure. In the survey of 70 cells, 65 contained univalents, 45 contained bivalents, and 49 contained multivalent. Moreover, chromosomes 9 and 10 as well as chromosomes 11 and 12 formed non-homologous bivalents at a higher frequency than the other chromosomes. However, chiasma was always detected in the bivalent only between chromosomes 11 and 12 at diakinesis or metaphase I, indicating the pairing between these two chromosomes leads non-homologous recombination during meiosis. The synaptonemal complex formation between non-homologs was further proved by immunodetection of RCE8, PAIR2, and ZEP1. Especially, ZEP1 only loaded onto the paired chromosomes other than the un-paired chromosomes at pachytene in haploid.  相似文献   

13.
M I Pigozzi  A J Solari 《Génome》1999,42(2):315-321
The total number of recombination nodules (RNs) in the autosomal synaptonemal complexes (SCs) is statistically equivalent in oocytes and spermatocytes from the domestic pigeon Columba livia. The distribution on RNs along the three longest autosomes is also equivalent in oocytes and spermatocytes. The numbers of RNs show a linear relationship when plotted against SC length both in oocytes and spermatocytes. On the other hand, the ZW pair shows a single and strictly localized RN near the synaptic termini, but the ZZ pair shows unrestricted location of RNs (average 3.8). The ZW and ZZ pairs of the pigeon are euchromatic and do not show specific chromatin packing at pachytene in either sex. The lack of sex-specific differences in the number and location of RNs in the autosomal bivalents of C. livia and previous data on the chicken, suggest that the regulation of crossing-over is basically different in birds and mammals.  相似文献   

14.
Crossing over is absent in oocytes of the silkworm, Bombyx mori. Synaptonemal complexes are present during pachytene between the paired chromosomes. At leptotene, lateral components of the synaptonemal complex are attached in a bouquet to a limited region of the nuclear envelope. Before completion of lateral components, synaptonemal complex formation begins at the nuclear envelope. With synaptonemal complex formation proceeding from both ends bivalents occasionally become interlocked. After pairing is completed, the bouquet arrangement is dissolved possibly as a result of a flow of the inner membrane of the nuclear envelope thereby separating the telomeres. After the telomeres are released from the nuclear envelope, material is deposited onto the lateral components of the synaptonemal complex. The modified synaptonemal complexes are retained by the bivalents until metaphase I. It is suggested that these modified synaptonemal complexes substitute for chiasmata in order to ensure regular disjunction of homologous chromosomes in the absence of crossing over.  相似文献   

15.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

16.
The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of "recombination nodules." Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants.  相似文献   

17.
This work describes the first report about the occurrence of recombination nodules (RNs) in spread pachytene cells of two species of Coleoptera: Palembus dermestoides (Tenebrionidae) and Epicauta atomaria (Meloidae). The RNs were observed in preparations contrasted with phosphotungstic acid. Considering RN morphology and its occurrence in pachytene bivalents (one per autosome bivalent) these structures were interpreted to be late RNs. P. dermestoides and E. atomaria have 2n = 20 chromosomes including an Xy(p) sex determination system. In spite of most frequently subtelocentric morphology observed in the autosomes of both species, the occurrence of RNs is limited only to the synaptonemal complex (SC) structure of the long arms. These findings are in agreement with those obtained using light microscopy analysis in which only one chiasma or terminalization event is observed per autosomal bivalent in early or late metaphase I cells. The RNs have the same average width of the SC of each analyzed species, a circular shape, strong electron density, and are observed mainly between the lateral elements of the SC. The RNs of P. dermestoides and E. atomaria have approximately the same average size (width), 180 +/- 20 nm and 160 +/- 80 nm, respectively. The absence of RNs in the short arms and its occurrence in the long arms are discussed considering the short arm pericentromeric and pro-centric heterochromatin.  相似文献   

18.
During meiotic prophase I, homologous chromosomes synapse and recombine. Both events are of vital importance for the success of meiosis. When homologous chromosomes synapse, a proteinaceous structure called synaptonemal complex (SC) appears along the pairing axis and meiotic recombination takes place. The existence of immunolabeling techniques for SC proteins (SCP1, SCP2 and SCP3) and for DNA mismatch repair proteins present in late recombination nodules (MLH1) allow analyses of both synapsis and meiotic recombination in the gametocyte I. In situ hybridization methods can be applied afterwards because chromatin is preserved during cell fixation for immunoanalysis. The combination of both methodologies allows the analysis of synapsis and the creation of recombination maps for each bivalent. In this work we apply the seven-fluorochrome subtelomere-specific multiplex FISH assay (stM-FISH) to human male meiotic cells previously labeled by immunofluorescence (SCP1, SCP3, MLH1, CENP) to assess its utility for human SC karyotyping. This FISH method consists of microdissected subtelomeric probes labeled combinatorially with seven different fluorochromes. Results prove its usefulness for the identification of all human SCs. Furthermore, by labeling subtelomeric regions this one-single-step method enables the characterization of interstitial and terminal SC fragments and SC delineation even if superposition is present in pachytene spreads.  相似文献   

19.
A synaptonemal complex (SC) analysis was carried out in male mice heterozygous (CHT/+) for three Robertsonian translocations. All pachytene preparations studied showed the presence of three trivalents. At early pachytene, the nonhomologous centromeric regions of the acrocentric chromosomes were unpaired. Heterosynapsis subsequently took place with complete pairing of the trivalents. Association between one of the three trivalents and the sex vesicle was observed in 30.4% of the nuclei. Association between the unpaired regions of two trivalents was present in 14.4% of the cells, suggesting that the relationship between unpaired regions of structural rearrangements and the X-Y bivalent may simply reflect the tendency of unpaired regions to establish end-to-end associations or heterosynapses among them, which are usually resolved during the pachytene stage of prophase I. Since the sex bivalent always has unpaired regions, these associations often affect the sex chromosomes.  相似文献   

20.
An examination of the meiotic pattern of chromosome 1 isolated from a feral mouse population and containing a double insertion (Is) of homogeneously staining regions (HSRs) was carried out. The region delineated by the proximal breakpoint of Is(HSR;1C5) 1Icg and the distal breakpoint of Is(HSR;1E3)2Icg is desynapsed during the early pachytene stage and heterosynapsed at the midpachytene, as shown by electron microscopic analysis of synaptonemal complexes. The HSRs have no effect on the segregation of chromosome 1 in heterozygous mice. The lack of homosynapsis in the region under study causes chiasmata redistribution in heteromorphic bivalents. In normal males, single chiasmata are located in the medial part of the chromosome. In heterozygotes, this segment is heterosynapsed and unavailable for recombination. This leads to a significant decrease in the frequency of bivalents bearing single chiasmata. The total number of chiasmata per bivalent is much higher in heterozygous males than in normal ones. The recombination frequency between proximal markers fz and In also is higher in heterozygous animals. The increase in the total chiasma number in the heteromorphic bivalent is due to the addition of double chiasmata located mostly at precentromeric and pretelomeric regions of the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号