首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—Maternal pyridoxine deficiency begun 2 weeks before mating and continued throughout pregnancy and the nursing period resulted in diminished wt. gains in the brain, the liver and the body in the first 16 days of life, as well as lowered levels of the aromatic l -amino acid decarboxylase in both brain and liver tissue. The fetus was protected from the effect of vitamin B6 deficiency during pregnancy, since at birth the body wt., organ weights, and decarboxylase levels in these tissues were comparable to those of control litters. The brain was affected less than the liver, both in rate of wt. increase and decarboxylase activity. The cerebellum normally developed measurable decarboxylase activity only during the second week of life. The cortex normally slowly increased its low decarboxylase activity during the first week postnatally, with a more rapid increase during the second week. This rapid increase was primarily in the holoenzyme moiety. The rest of the brain, which had well developed levels of decarboxylase activity at birth, normally showed a sharp increase during the second week of life which was also largely in the holoenzyme portion. When the increasing weights of these tissues were considered, it became obvious that the total amount of apoenzyme as well as the amount of holoenzyme were increasing in the normally developing rat, although the greatest amount of the change was in the holoenzyme form. The liver normally showed a much more rapid increase in decarboxylase activity than did the brain, and showed the increase much earlier. The holoenzyme normally increased rapidly after the first 4 days, whereas the apoenzyme concentration levelled off at this time. The effect of the pyridoxine deficiency on decarboxylase activity was almost entirely on the holoenzyme form of the decarboxylase, since the apoenzyme form generally remained the same in the control and the deficient pups during development. There appeared to be no decarboxylase inhibitor present in pyridoxine deficient tissues, nor any evidence in control tissues for an enzyme required for the activation of the decarboxylase by cofactor.  相似文献   

2.
Ornithine decarboxylase activity in developing rat brain   总被引:7,自引:5,他引:2  
—Total ornithine decarboxylase (ODC) (EC 4.1.1.17) activity per rat brain was elevated markedly from 14 days after conception to 12 days postnatum. ODC activity in the brainstem was very low and changed little during postnatal development. Activity in the cerebral hemispheres declined from a high level at birth to the low adult level by 8 days postnatum. Conversely activity in the cerebellum increased markedly from 3 days until 11 days postnatum, then suddenly decreased. Hence, the periods of greatest ODC activity paralleled those of maximal cell proliferation in each brain region. During perinatal brain development ODC activity changed considerably; it declined at about one day prior to term, and then increased rapidly to its highest level of activity at 4 h postnatum. Premature birth by caesarian section or lack of maternal care and nutrition did not affect this early postnatal response. The postnatal burst in ODC activity appears to be unique for brain tissue, since this response did not occur in heart, skeletal muscle or liver. Data from studies in which portions of fractions characterized by high or low enzymatic activity, respectively, were mixed or in which the supernatant enzyme fraction was dialysed are not consistent with the presence of direct inhibitors or activators of the enzyme. In addition, administration of cycloheximide to newborn rats abolished the 4-h postnatal burst in ODC activity. Our results suggest that the increase in ODC activity reflects enzyme synthesis de novo.  相似文献   

3.
Developmental changes in pyruvate kinase (PK), lactate dehydrogenase (LDH), α-glycerophosphate dehydrogenase (α-GPD), glucose-6-phosphate dehydrogenase (G6P), succinate dehydrogenase (SDH), glutamate dehydrogenase (GDH), choline acetyltransferase (CAT), glutamate decarboxylase (GAD), activities were measured in early autopsy material in the following areas of human neocortex: area 4 (motor cortex), area 17 (visual cortex), area 40 (gyrus supramarginalis, associative cortex). Changes with age were analysed from 8 fetal weeks to adult age. The important points emerging from this study are: 1. Enzymes associated with glycolytic pathways show a high activity in early fetal period, decline through to the end of the active phase of neurogenesis and then, rise continuously to the end of the first year of life. 2. G6P, an enzyme associated with the oxidative segment of the pentose phosphate pathway, shows a high activity at 8 fetal weeks and, gradually declines through to the end of the active phase of neurogenesis; it then either does not change significantly (motor cortex) or increases slightly. 3. Enzymes related to the tricarboxylic pathway have a low level of activity throughout the first half of gestation, and then rise markedly during the last fetal months and the first year after birth. SDH increase is of much higher magnitude (× 10) than that observed for glycolytic enzymes (×4). For the enzymes of oxidative metabolism, motor cortex is the most advanced area, while associative cortex matures more slowly. 4. CAT activity at 8 fetal weeks is high in visual cortex and declines to the fifth month. After that time, there is a continuous rise until the age of 11 years. Although the time pattern in reaching the adult value is different in motor and associative cortex, there exists a continuous increase from fetal onset to adult level in both areas. Developmental changes in GAD activity are very unusual. The development of activity lags behind that of CAT and commences after birth. After a steady rise in the first year of life, the activity decreases after this age.  相似文献   

4.
Mouse brain ornithine decarboxylase activity is about 70-fold higher at the time of birth compared with that of adult mice. Enzyme activity declines rapidly after birth and reaches the adult level by 3 weeks. Immunoreactive enzyme concentration parallels very closely the decrease of enzyme activity during the first postnatal week, remaining constant thereafter. The content of brain antizyme, the macromolecular inhibitor to ornithine decarboxylase, in turn is very low during the first 7 days and starts then to increase and at the age of 3 weeks it is about six times the level of that in newborn mice. This may explain the decrease in enzyme activity during brain maturation, and suggests the regulation of polyamine biosynthesis by an antizyme-mediated mechanism in adult brain.  相似文献   

5.
1. The palmitate oxidation rate was measured in intact diaphragm and m. flexor digitorum brevis and in whole homogenates of heart, diaphragm and m. quadriceps of developing rats between late foetal life and maturity. Activities of the mitochondrial enzymes cytochrome c oxidase and citrate synthase were also determined. 2. Immediately after birth the palmitate oxidation rate increases markedly in both intact diaphragm and m. flexor digitorum brevis and falls gradually after day 1 to adult values which are about 35% of those at birth. 3. The oxidation capacities of diaphragm and m. quadriceps, but especially of heart, increase steadily during development, starting before birth and reaching adult values at 15-20 days postnatally. The activities of the mitochondrial enzymes show a similar developmental pattern. 4. In heart the increase of oxidative capacity is the result of an increase of both mitochondrial content and mitochondrial activity. The mitochondrial contents of diaphragm and m. quadriceps, on the other hand, decrease with age and the increase of their oxidative capacities is due to a large rise of the mitochondrial activity.  相似文献   

6.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

7.
1. The highest blood concentrations of ketone bodies were found at 5 days of age, after which time the concentration fell to reach the adult value by 30 days of age. 2. Both mitochondrial and cytoplasmic hydroxymethylglutaryl-CoA synthase activities were detected, with highest activities being found in the mitochondria at all stages of development. Activity of the mitochondrial enzyme increases rapidly immediately after birth, showing a maximum at 15 days of age, thereafter falling to adult values. The cytoplasmic enzyme, on the other hand, increased steadily in activity after birth to reach a maximum at 40 days of age, after which time activity fell to adult values. 3. Both mitochondrial and cytoplasmic aceto-acetyl-CoA thiolase activities were detected, with the mitochondrial enzyme having considerably higher activities at all stages of development. The developmental patterns for both enzymes were very similar to those for the corresponding hydroxymethylglutaryl-CoA synthases. 4. The activity of heart acetoacetyl-CoA transferase remains constant from late foetal life until the end of the suckling period, after which time there is a gradual threefold increase in activity to reach the adult values. The activity of brain 3-oxo acid CoA-transferase increases steadily after birth, reaching a maximum at 30 days of age, thereafter decreasing to adult values, which are similar to foetal activities. Although at all stages of development the specific activity of the heart enzyme is higher than that of brain, the total enzymic capacity of the brain is higher than that of the heart during the suckling period.  相似文献   

8.
DOPA decarboxylase activity in haemolymph and integument was low in last instar and early pharate adult Periplaneta americana, but began to increase shortly before ecdysis. Decarboxylation rates of l-DOPA, about 10 times the larval level by the start of ecdysis, reached a peak about 6 hr afterward, coinciding with the main period of cuticular sclerotization. Activity decreased rapidly during the next 18 hr, then decreased gradually for several days. Haemolymph DOPA decarboxylase activity was about four times greater than the integument, based on tissue dry weights. The fat body and gut tissues had low DOPA decarboxylase activity in all ages tested, and this did not increase at ecdysis. Tyrosine decarboxylase activity was significant only in the haemolymph and at consistently low levels.DOPA decarboxylase, therefore, apparently plays a major rôle in production of catecholamine derivatives for cuticular sclerotization in P. americana, while tyrosine decarboxylation is minor. Both haemolymph and integument appear to be important sites of dopamine biosynthesis.  相似文献   

9.
The activity of carbonic anhydrase (E.C.4.2.1.1) (CA) has been measured in the blood of adult and fetal sheep and lambs. The mean activity in adult sheep was 0.89 enzyme units (EU) per 100 micrograms of Hb. The activity in fetal sheep aged 90 days was just below 20% of this and in fetuses near full term was just under 40% of the mean adult level. The regression line gave an increase of CA activity (per 100 micrograms Hb) of 0.004 EU/day. The appearance of CA in fetal blood normally occurred before any detectable production of adult Hb. One aberrant fetus showed early development of the adult pattern in the red cells, having adult type Hb and adult levels of CA during the period of 116-128 days of fetal age. In the period after birth the CA level in the blood rose rapidly, reaching the adult level 30 days after birth. During this period activity per 100 micrograms HB increased by 0.014 EU/day, significantly faster than during fetal life.  相似文献   

10.
Abstract— Three enzymes of cholesterol ester metabolism, a cholesterol-esterifying enzyme which incorporates free fatty acids into cholesterol esters without participation of CoA, and two cholesterol ester hydrolases with differing pH optima, all showed distinct changes in developing rat brains. The specific activity of the esterifying enzyme was approx. 20 percent of the adult level at birth, increased gradually to the adult level by 20 days of age and remained constant thereafter. The pH 4.2 hydrolase at birth also had a specific activity of about 20 per cent of the adult level but it increased rapidly to reach a peak at 13 days, by which time the activity had increased eight-fold. The activity declined somewhat thereafter to reach the adult level by 23–30 days. In contrast, there already was 60 per cent of the adult specific activity of the pH 6.6 cholesterol ester hydrolase at birth. The activity remained constant until 12 days and then doubled during the next two weeks, reaching a broad peak, then declining slightly to reach the adult activity by 50 days. Therefore, the developmental changes of both of the hydrolases appeared to be related to the process of myelination. The period of active myelination (10–30 days) was characterized by the sharp rise in the activity of pH 6.6 cholesterol ester hydrolase and by the rapid decrease of pH 4.2 cholesterol ester hydrolase.  相似文献   

11.
The hormonal stimulus to rat fetal and neonatal somatic and skeletal growth has been investigated by a study of ciruclating somatomedin (SM), growth hormone (GH) and insulin levels in rats from 21 days in utero to 40 days of post natal life. Somatomedin activity could not be detected in the serum of fetal rats in which circulating GH and insulin levels were high. In early post natal life GH and insulin levels remained high but gradually declined reaching normal adult levels at 19 days and 40 days respectively. Somatomedin activity was measurable only at low levels until 11 days after birth and thereafter remained steady throughout the time period studied. These studies suggest that somatomedin alone is not responsible for the rapid growth of the rat in early neonatal life and it is suggested that insulin may also be active as a growth factor in this period.  相似文献   

12.
Distribution of the activity of S-adenosylmethionine decarboxylase in homogenates of rat liver generating after partial hepatectomy and during development are reported. In the stages of rapid growth of liver remaining after partial hepatectomy, and increased activity of S-adenosylmethionine decarboxylase in the supernatant fractions is accompanied by a decreased activity in the crude nuclear fractions. Prior to birth, in the liver of the developing rat, all activity of S-adenosylmethionine decarboxylase is in the supernatant fraction. After birth, activity in the crude nuclear fraction increases rapidly, reaching adult values by the end of weaning.  相似文献   

13.
pineal acetyl-CoA hydrolase is measurable at 4 days before birth. It increases rapidly to a maximum of 0.37 nmol/min/0.1 mg protein during the first week after birth, thereafter gradually decreasing and stabilizing at adult levels (0.27 nmol/min/0.1 mg protein) 3-4 weeks after birth. Unlike A/-acetyltransferase, the activity of acetyl-CoA hydrolase does not increase following treatment with isoproterenol, does not exhibit a circadian rhythm and is not inactivated on exposure of the animals to light at night. In addition, denervation of the pineal gland does not alter acetyl-CoA hydrolase activity.  相似文献   

14.
—Subcellular fractions from brains of 5, 10, 13, 16, 21, 30 day-old and adult rats were prepared. Protein content and various enzyme activities were assayed in all fractions and brain homogenates. γ-Glutamyl transpeptidase activity and 5′-nucleotidase were very low at 5 days of life but steadily increased, reaching adult concentrations at about 30 days after birth. Alkaline phosphatase, instead slowly decreased with maturation, while monoamine oxidase after an initial decrease, increased rapidly to adult levels. The relation between the appearance of enzymatic activity in brain and the blood-brain barrier function is discussed.  相似文献   

15.
16.
Liver UDPglucose in early chick-enbryo has, by the 19th day of incubation, reached levels existing in young hatched (White Leghorn) chicks. In developing ASH/TO mouse liver, the dehydrogenase is low, but increases sharply at late foetal and weaning stages; adult activity is greater in females than males. The UDPglucuronic acid content of embryo liver from at least 12 days resembles that of adult chicken; in mouse liver it rises over birth and infancy. These differences in relative rates of development of enzyme and nucleotide in the 2 species can explain why overall glucuronidation by liver appears in chick rapidly after hatching, but in mouse only gradually during infancy. UDPglucose dehydrogenase increases in embryo liver, probably by induction, 2-3-fold during culture with phenobarbital and some 5-fold when exposed to the drug in ovo. Phenobarbital treatment also increases the enzyme in late foetal and adult mice, abolishing the sex difference. Differences between induction of UDPglucose dehydrogenase and UDPglucuronyl transferase during development, culture and phenobarbital treatment indicate that control mechanism for these two enzymes are not directly linked.  相似文献   

17.
The effect of undernutrition on the activity of two key enzymes of purine salvage pathway, namely hypoxanthine-guanine phosphoribosyltransferase (HGPRTase) and adenine phosphoribosyltransferase (APRTase), in cerebral hemispheres, cerebellum and brain stem of rats at different days of postnatal development was studied. The activity of HGPRTase and of APRTase is significantly lower in all brain regions of undernourished animals at 5 days after birth; between 10 and 15 days of age there is a recovery of the enzymatic activity which is particularly evident in the cerebellum. Successively both enzymatic activities decrease reaching at 30 days of age values quite similar to those of controls. These results indicate that undernutrition during fetal and postnatal development, impairs and delays the activity of the enzymes of purine salvage pathway.  相似文献   

18.
Abstract— The concentration of cystathionine, along with the specific activities of the enzymes involved in its synthesis and degradation, cystathionine synthasc and cystathionase, respectively, have been measured in brain, liver and kidney of the developing Rhesus monkey from mid-gestation, through birth and neonatal life, to maturity. The concentration of cystathionine and the specific activity of cystathionine synthase are low in fetal brain. Both parameters increase slowly after birth and reach values found in adult brain at approx 3 months of postnatal age. The activity of cystathionase in brain is low throughout development.
Liver provides a direct contrast in that the concentration of cystathionine and the specific activity of cystathionine synthase are high in the fetus, decreasing rapidly after birth to values found in the adult by 2 weeks of postnatal age. Cystathionase activity is low in fetal liver and increases slowly after birth reaching values found in adult liver after 2–3 months. Kidney has no more than trace amounts of cystathionine throughout development, higher activity of cystathionine synthase in the fetus than in the adult and high, unchanged activity of cystathionase throughout the period of development studied.
These results indicate that the high concentrations of cystathionine found in primate brain are reached postnatally and suggest that this high concentration of cystathionine may be associated with the functioning of mature brain.  相似文献   

19.
M Sj?blom  L Pilstr?m  J M?rland 《Enzyme》1978,23(2):108-115
The ontogenetic development of the enzymes alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenases (ALDH I and II) was followed in rats. ADH could be detected just before birth and increased gradually to reach 82% of adult values at 47 days. ALDH I and II were present from day 15 of gestation, increased rapidly at birth, and reached 80-90% adult values at 47 days. The ratio between ALDH and ADH activities decreased gradually during ontogenesis. The relative subcellular distribution of all enzymes was identical before birth, 7 days after birth and in adults. The placental activities of ADH and ALDH I and II were studied at 15 and 20 days of pregnancy. ADH could not be detected in placentas. Low activities of ALDH I and II were present in placentas studied at 15 days of gestation, and still lower activities were found in placenta at 20 days.  相似文献   

20.
Kidney and intestinal brush border membranes were isolated from 14-day-old rabbits and papa?n solubilized maltase-glucoamylase was purified to almost homogeneity from both membranes. Maltase-glucoamylase from kidney and intestine have the same molecular weight (669,000 daltons by AcA 22 gel filtration) and the same Km (4 mM, for maltose). Tris (Ki = 12.5 mM, for maltose) is a non-competitive inhibitor for both enzymes. In intestine, maltase and glucoamylase have low activity during the first two postnatal weeks and then undergo a sharp increase during the next 2 weeks. In contrast, for trehalase, adult levels are reached about 6 days after birth. Hydrocortisone injection to 10 days rabbits causes precocious increases in the specific activities of trehalase (3.6 x), maltase (5.2 x) and glucoamylase (7.4 x). Conversely, kidney maltase, glucoamylase and trehalase activities rise gradually from birth, reaching adult levels by the end of the third week. Administration of hydrocortisone to suckling rabbit does not affect either trehalase or maltase and glucoamylase in kidney brush border membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号