首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Proteins are imported from the cytoplasm into the nucleus by importin beta-related transport receptors. The yeast Saccharomyces cerevisiae contains ten of these importins, but only two of them are essential. After transfer through the nuclear pore, importins release their cargo upon binding to the Ran GTPase, the key regulator of nuclear transport. We investigated the import of the core histones in yeast and found that four importins are involved. The essential Pse1p and the nonessential importins Kap114p, Kap104p, and Yrb4p/Kap123p specifically bind to histones H2A and H2B. Release of H2 histones from importins requires Ran-GTP and DNA simultaneously suggesting a function of the importins in intranuclear targeting. H3 and H4 associate mainly with Pse1p and the dissociation requires Ran but not DNA, which points to a different import mechanism. Import of green fluorescent protein fusions to H2A and H2B requires primarily Pse1p and Kap114p, whereas Yrb4p plays an auxiliary role. Pse1p is predominantly necessary for nuclear uptake of H3 and H4, while Kap104p and Yrb4p also support import. We conclude from our in vivo and in vitro experiments that import of the essential histones is mediated mainly by the essential importin Pse1p, while the non-essential Kap114p functions in a parallel import pathway for H2A and H2B.  相似文献   

5.
6.
The correct assembly of chromatin is necessary for the maintenance of genomic stability in eukaryotic cells. A critical step in the assembly of new chromatin is the cell cycle-regulated synthesis and nuclear import of core histones. Here we demonstrate that the nuclear import pathway of histones H3 and H4 is mediated by at least two karyopherins/importins, Kap123p and Kap121p. Cytosolic H4 is found associated with Kap123p and H3. Kap121p is also present in the H4-PrA-associated fractions, albeit in lesser amounts than Kap123p, suggesting that this Kap serves as an additional import receptor. We further demonstrate that cytosolic Kap123p is associated with acetylated H3 and H4. H3 and H4 each contain a nuclear localization signal (NLS) in their amino-terminal domains. These amino-terminal domains were found to be essential for the nuclear accumulation of H3 and H4-green fluorescent protein reporters. Each NLS mediated direct binding to Kap123p and Kap121p, and decreased nuclear accumulation of H3 and H4 NLS-green fluorescent protein reporters was observed in specific kap mutant strains. H3 and H4 are the first histones to be assembled onto DNA, and these results show that their import is mediated by at least two import pathways.  相似文献   

7.
We have identified a specific karyopherin docking complex within the yeast nuclear pore complex (NPC) that contains two novel, structurally related nucleoporins, Nup53p and Nup59p, and the NPC core protein Nup170p. This complex was affinity purified from cells expressing a functional Nup53p–protein A chimera. The localization of Nup53p, Nup59p, and Nup170p within the NPC by immunoelectron microscopy suggests that the Nup53p-containing complex is positioned on both the cytoplasmic and nucleoplasmic faces of the NPC core. In association with the isolated complex, we have also identified the nuclear transport factor Kap121p (Pse1p). Using in vitro binding assays, we showed that each of the nucleoporins interacts with one another. However, the association of Kap121p with the complex is mediated by its interaction with Nup53p. Moreover, Kap121p is the only β-type karyopherin that binds Nup53p suggesting that Nup53p acts as a specific Kap121p docking site. Kap121p can be released from Nup53p by the GTP bound form of the small GTPase Ran. The physiological relevance of the interaction between Nup53p and Kap121p was further underscored by the observation that NUP53 mutations alter the subcellular distribution of Kap121p and the Kap121p- mediated import of a ribosomal L25 reporter protein. Interestingly, Nup53p is specifically phosphorylated during mitosis. This phenomenon is correlated with a transient decrease in perinuclear-associated Kap121p.  相似文献   

8.
9.
10.
Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.  相似文献   

11.
In yeast there are at least 14 members of the beta-karyopherin protein family that govern the movement of a diverse set of cargoes between the nucleus and cytoplasm. Knowledge of the cargoes carried by each karyopherin and insight into the mechanisms of transport are fundamental to understanding constitutive and regulated transport and elucidating how they impact normal cellular functions. Here, we have focused on the identification of nuclear import cargoes for the essential yeast beta-karyopherin, Kap121p. Using an overlay blot assay and coimmunopurification studies, we have identified 30 putative Kap121p cargoes. Among these were Nop1p and Sof1p, two essential trans-acting protein factors required at the early stages of ribosome biogenesis. Characterization of the Kap121p-Nop1p and Kap121p-Sof1p interactions demonstrated that, in addition to lysine-rich nuclear localization signals (NLSs), Kap121p recognizes a unique class of signals distinguished by the abundance of arginine and glycine residues and consequently termed rg-NLSs. Kap104p is also known to recognize rg-NLSs, and here we show that it compensates for the loss of Kap121p function. Sof1p is also transported by Kap121p; however, its import can be mediated by a piggyback mechanism with Nop1p bridging the interaction between Sof1p and Kap121p. Together, our data elucidate additional levels of complexity in these nuclear transport pathways.  相似文献   

12.
In Saccharomyces cerevisiae, Spo12p is involved in mitosis and is essential for meiosis. We found that Spo12p is imported into the nucleus by the karyopherin Kap121p. A complex containing Spo12p and Kap121p was isolated from cytosol and was also reconstituted with recombinant proteins, indicating that this interaction is direct. Spo12p was mislocalized to the cytosol in pse1-1, a temperature-sensitive strain harboring a mutation of Kap121p, at the permissive temperature, confirming an essential role for Kap121p in Spo12p import. Spo12p was also mislocalized in a pse1-1/pse1-1 homozygous strain, suggesting it is imported via the same pathway in diploid cells. Furthermore, we found that pse1-1/pse1-1 shows a sporulation defect similar to that of spo12Delta/spo12Delta. In addition, we have characterized the Spo12p nuclear localization signal, mapped it to residues 76-130, and identified residues within this region that are important for nuclear localization signal function.  相似文献   

13.
Kap123p is a yeast beta-karyopherin that imports ribosomal proteins into the nucleus prior to their assembly into preribosomal particles. Surprisingly, Kap123p is not essential for growth, under normal conditions. To further explore the role of Kap123p in nucleocytoplasmic transport and ribosome biogenesis, we performed a synthetic fitness screen designed to identify genes that interact with KAP123. Through this analysis we have identified three other karyopherins, Pse1p/Kap121p, Sxm1p/Kap108p, and Nmd5p/Kap119p. We propose that, in the absence of Kap123p, these karyopherins are able to supplant Kap123p's role in import. In addition to the karyopherins, we identified Rai1p, a protein previously implicated in rRNA processing. Rai1p is also not essential, but deletion of the RAI1 gene is deleterious to cell growth and causes defects in rRNA processing, which leads to an imbalance of the 60S/40S ratio and the accumulation of halfmers, 40S subunits assembled on polysomes that are unable to form functional ribosomes. Rai1p localizes predominantly to the nucleus, where it physically interacts with Rat1p and pre-60S ribosomal subunits. Analysis of the rai1/kap123 double mutant strain suggests that the observed genetic interaction results from an inability to efficiently export pre-60S subunits from the nucleus, which arises from a combination of compromised Kap123p-mediated nuclear import of the essential 60S ribosomal subunit export factor, Nmd3p, and a DeltaRAI1-induced decrease in the overall biogenesis efficiency.  相似文献   

14.
The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be further elucidated. S. cerevisiae Lhp1 is an abundant protein that functions as an RNA chaperone in a variety of biologically important processes. It localizes almost exclusively to the nucleus and is imported by Kap108. We show that mutation of 3 of the 275 residues in Lhp1 alters its import pathway to a Kap121-dependent process. This mutant does not retain wild-type function and is bound by several chaperones. We propose that Kap121 also acts as a chaperone, one that can act as a genetic buffer by transporting mutated proteins to the nucleus.  相似文献   

15.
16.
17.
Nuclear protein import in eukaryotic cells is mediated by karyopherin proteins, which bind to specific nuclear localization signals on substrate proteins and transport them across the nuclear envelope and into the nucleus. Replication protein A (RPA) is a nuclear protein comprised of three subunits (termed Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae) that binds single-stranded DNA and is essential for DNA replication, recombination, and repair. RPA associates with two different karyopherins in yeast, Kap95, and Msn5/Kap142. However, it is unclear which of these karyopherins is responsible for RPA nuclear import. We have generated GFP fusion proteins with each of the RPA subunits and demonstrate that these Rfa-GFP chimeras are functional in yeast cells. The intracellular localization of the RPA proteins in live cells is similar in wild-type and msn5Δ deletion strains but becomes primarily cytoplasmic in cells lacking functional Kap95. Truncating the C-terminus of any of the RPA subunits results in mislocalization of the proteins to the cytoplasm and a loss of protein-protein interactions between the subunits. Our data indicate that Kap95 is likely the primary karyopherin responsible for RPA nuclear import in yeast and that the C-terminal regions of Rfa1, Rfa2, and Rfa3 are essential for efficient nucleocytoplasmic transport of each RPA subunit.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号