首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
The channel kinases TRPM6 and TRPM7 have recently been discovered to play important roles in Mg2+ and Ca2+ homeostasis, which is critical to both human health and cell viability. However, the molecular basis underlying these channels' unique Mg2+ and Ca2+ permeability and pH sensitivity remains unknown. Here we have created a series of amino acid substitutions in the putative pore of TRPM7 to evaluate the origin of the permeability of the channel and its regulation by pH. Two mutants of TRPM7, E1047Q and E1052Q, produced dramatic changes in channel properties. The I-V relations of E1052Q and E1047Q were significantly different from WT TRPM7, with the inward currents of 8- and 12-fold larger than TRPM7, respectively. The binding affinity of Ca2+ and Mg2+ was decreased by 50- to 140-fold in E1052Q and E1047Q, respectively. Ca2+ and Mg2+ currents in E1052Q were 70% smaller than those of TRPM7. Strikingly, E1047Q largely abolished Ca2+ and Mg2+ permeation, rendering TRPM7 a monovalent selective channel. In addition, the ability of protons to potentiate inward currents was lost in E1047Q, indicating that E1047 is critical to Ca2+ and Mg2+ permeability of TRPM7, and its pH sensitivity. Mutation of the corresponding residues in the pore of TRPM6, E1024Q and E1029Q, produced nearly identical changes to the channel properties of TRPM6. Our results indicate that these two glutamates are key determinants of both channels' divalent selectivity and pH sensitivity. These findings reveal the molecular mechanisms underpinning physiological/pathological functions of TRPM6 and TRPM7, and will extend our understanding of the pore structures of TRPM channels.  相似文献   

2.
The selectivity filter of the cation channel TRPM4   总被引:5,自引:0,他引:5  
Transient receptor potential channel melastatin subfamily (TRPM) 4 and its close homologue, TRPM5, are the only two members of the large transient receptor potential superfamily of cation channels that are impermeable to Ca(2+). In this study, we located the TRPM4 selectivity filter and investigated possible structural elements that render it Ca(2+)-impermeable. Based on homology with known cation channel pores, we identified an acidic stretch of six amino acids in the loop between transmembrane helices TM5 and TM6 ((981)EDMDVA(986)) as a potential selectivity filter. Substitution of this six-amino acid stretch with the selectivity filter of TRPV6 (TIIDGP) resulted in a functional channel that combined the gating hallmarks of TRPM4 (activation by Ca(2+), voltage dependence) with TRPV6-like sensitivity to block by extracellular Ca(2+) and Mg(2+) as well as Ca(2+) permeation. Neutralization of Glu(981) resulted in a channel with normal permeability properties but a strongly reduced sensitivity to block by intracellular spermine. Neutralization of Asp(982) yielded a functional channel that exhibited extremely fast desensitization (tau < 5 s), possibly indicating destabilization of the pore. Neutralization of Asp(984) resulted in a non-functional channel with a dominant negative phenotype when coexpressed with wild type TRPM4. Combined neutralization of all three acidic residues resulted in a functional channel whose voltage dependence was shifted toward very positive potentials. Substitution of Gln(977) by a glutamate, the corresponding residue in divalent cation-permeable TRPM channels, altered the monovalent cation permeability sequence and resulted in a pore with moderate Ca(2+) permeability. Our findings delineate the selectivity filter of TRPM channels and provide the first insight into the molecular basis of monovalent cation selectivity.  相似文献   

3.
In voltage-gated ion channels, residues responsible for ion selectivity were identified in the pore-lining SS1-SS2 segments. Negatively charged glutamate residues (E393, E736, E1145, and E1446) found in each of the four repeats of the alpha 1C subunit were identified as the major determinant of selectivity in Ca2+ channels. Neutralization of glutamate residues by glutamine in repeat I (E393Q), repeat III (E1145Q), and repeat IV (E1446Q) decreased the channel affinity for calcium ions 10-fold from the wild-type channel. In contrast, neutralization of glutamate residues in repeat II failed to significantly alter Ca2+ affinity. Likewise, mutation of neighboring residues in E1149K and D1450N did not affect the channel affinity, further supporting the unique role of glutamate residues E1145 in repeat III and E1446 in repeat IV in determining Ca2+ selectivity. Conservative mutations E1145D and E1446D preserved high-affinity Ca2+ binding, which suggests that the interaction between Ca2+ and the pore ligand sites is predominantly electrostatic and involves charge neutralization. Mutational analysis of E1446 showed additionally that polar residues could achieve higher Ca2+ affinity than small hydrophobic residues could. The role of high-affinity calcium binding sites in channel permeation was investigated at the single-channel level. Neutralization of glutamate residue in repeats I, II, and III did not affect single-channel properties measured with 115 mM BaCl2. However, mutation of the high-affinity binding site E1446 was found to significantly affect the single-channel conductance for Ba2+ and Li+, providing strong evidence that E1446 is located in the narrow region of the channel outer mouth. Side-chain substitutions at 1446 in repeat IV were used to probe the nature of divalent cation-ligand interaction and monovalent cation-ligand interaction in the calcium channel pore. Monovalent permeation was found to be inversely proportional to the volume of the side chain at position 1446, with small neutral residues such as alanine and glycine producing higher Li+ currents than the wild-type channel. This suggests that steric hindrance is a major determinant for monovalent cation conductance. Divalent permeation was more complex. Ba2+ single-channel conductance decreased when small neutral residues such as glycine were replaced by bulkier ones such as glutamine. However, negatively charged amino acids produced single-channel conductance higher than predicted from the size of their side chain. Hence, negatively charged residues at position 1446 in repeat IV are required for divalent cation permeation.  相似文献   

4.
Voltage-sensitive sodium channels and calcium channels are homologous proteins with distinctly different selectivity for permeation of inorganic cations. This difference in function is specified by amino acid residues located within P-region segments that link presumed transmembrane elements S5 and S6 in each of four repetitive Domains I, II, III, and IV. By analyzing the selective permeability of Na+, K+, and Ca2+ in various mutants of the mu 1 rat muscle sodium channel, the results in this paper support the concept that a conserved motif of four residues contributed by each of the Domains I-IV, termed the DEKA locus in sodium channels and the EEEE locus in calcium channels, determines the ionic selectivity of these channels. Furthermore, the results indicate that the Lys residue in Domain III of the sodium channel is the critical determinant that specifies both the impermeability of Ca2+ and the selective permeability of Na+ over K+. We propose that the alkylammonium ion of the Lys(III) residue acts as an endogenous cation within the ion binding site/selectivity filter of the sodium channel to tune the kinetics and affinity of inorganic cation binding within the pore in a manner analogous to ion-ion interactions that occur in the process of multi-ion channel conduction.  相似文献   

5.
Vanilloid receptor subunit 1 (VR1) is a nonselective cation channel that integrates multiple pain-producing stimuli. VR1 channels are blocked with high efficacy by the well established noncompetitive antagonist ruthenium red and exhibit high permeability to divalent cations. The molecular determinants that define these functional properties remain elusive. We have addressed this question and evaluated by site-specific neutralization the contribution on pore properties of acidic residues located in the putative VR1 pore region. Mutant receptors expressed in Xenopus oocytes exhibited capsaicin-operated ionic currents akin to those of wild type channels. Incorporation of glutamine residues at Glu(648) and Glu(651) rendered minor effects on VR1 pore attributes, while Glu(636) slightly modulated pore blockade. In contrast, replacement of Asp(646) by asparagine decreased 10-fold ruthenium red blockade efficacy and reduced 4-fold the relative permeability of the divalent cation Mg(2+) with respect to Na(+) without changing the selectivity of monovalent cations. At variance with wild type channels and E636Q, E648Q, and E651Q mutant receptors, ruthenium red blockade of D646N mutants was weakly sensitive to extracellular pH acidification. Collectively, our results suggest that Asp(646) is a molecular determinant of VR1 pore properties and imply that this residue may form a ring of negative charges that structures a high affinity binding site for cationic molecules at the extracellular entryway.  相似文献   

6.
TRPM7 is a divalent cation-permeable channel that is ubiquitously expressed. Recently, mouse TRPM7 has been shown to be sensitive to, and even permeable to, protons when heterologously expressed. Here we have demonstrated that human TRPM7 expressed either heterologously or endogenously also exhibits proton conductivity. The gene silencing of TRPM7 by small interfering RNA suppressed H+ currents in human cervical epithelial HeLa cells. In HEK293T cells transfected with human TRPM7, the inward proton conductance was suppressed by extracellular Mg2+ or Ca2+ with IC(50) values of 0.5 and 1.9 mm, respectively. Anomalous mole fraction behavior of H+ currents in the presence of Mg2+ or Ca2+ indicated that these divalent cations compete with protons for binding sites. Systematic mutation of negatively charged amino acid residues within the putative pore-forming region of human TRPM7 into the neutral amino acid alanine was tested. E1047A resulted in non-functional channels, and D1054A abolished proton conductance, whereas E1052A and D1059A only partially reduced proton conductivity. Thus, it is concluded that Asp-1054 is an essential determinant of the proton conductivity, whereas Glu-1047 might be required for channel formation, and the remaining negatively charged amino acids in the pore region (Glu-1052 and Asp-1059) may play a facilitating role in the proton conductivity of human TRPM7. It is suggested that proton conductivity of endogenous human TRPM7 plays a role in physiologically/pathologically acidic situations.  相似文献   

7.
Proteins of the mammalian TRP (transient receptor potential) family form a heterogenous group of cation channels important for cellular Ca2+ signaling and homeostasis. Here we present the full-length sequence of TRPM3, a member of the melastatin-like subfamily (TRPM) of TRP channels. TRPM3 expression was found in human kidney and brain. HEK293 cells transiently transfected with TRPM3 showed a constitutive Ca2+ and Mn2+ entry. Whole-cell patch clamp experiments confirmed the spontaneous activity of TRPM3 and revealed permeability ratios PCa/PNa of 1.57 and PNa/PCs of 0.75. In cell-attached patches, spontaneous inward and outward currents were observed. At negative membrane potentials and in the presence of either 140 mm Cs+, 140 mm Na+, or 100 mm Ca2+ in the pipette solution, the single channel conductance levels were 133, 83, and 65 pS, respectively. The Ca2+ entry in TRPM3-expressing HEK293 cells increased during treatment with hypotonic extracellular solution. The reduction of extracellular osmolarity was accompanied by cell swelling, suggesting volume-regulated activity of TRPM3. From its function and expression in human kidney, we propose a role of TRPM3 in renal Ca2+ homeostasis.  相似文献   

8.
Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.  相似文献   

9.
The molecular basis for divalent cationic permeability in transient receptor potential melastatin subtype (TRPM) channels is not fully understood. Here we studied the roles of all eight acidic residues, glutamate or aspartate, and also the glutamine residue between pore helix and selectivity filter in the pore of TRPM2 channel. Mutants with alanine substitution in each of the acidic residues, except Glu-960 and Asp-987, formed functional channels. These channels exhibited similar Ca(2+) and Mg(2+) permeability to wild type channel, with the exception of the E1022A mutant, which displayed increased Mg(2+) permeability. More conservative E960Q, E960D, and D987N mutations also led to loss of function. The D987E mutant was functional and showed greater Ca(2+) permeability along with concentration-dependent inhibition of Na(+)-carrying currents by Ca(2+). Incorporation of negative charge in place of Gln-981 between the pore helix and selectivity filter by changing it to glutamate, which is present in the more Ca(2+)-permeable TRPM channels, substantially increased Ca(2+) permeability. Expression of concatemers linking wild type and E960D mutant subunits resulted in functional channels that exhibited reduced Ca(2+) permeability. These data taken together suggest that Glu-960, Gln-981, Asp-987, and Glu-1022 residues are engaged in determining divalent cationic permeation properties of the TRPM2 channel.  相似文献   

10.
Utilizing a novel molecular model of TRPC3, based on the voltage-gated sodium channel from Arcobacter butzleri (NaVAB) as template, we performed structure-guided mutagenesis experiments to identify amino acid residues involved in divalent permeation and gating. Substituted cysteine accessibility screening within the predicted selectivity filter uncovered amino acids 629–631 as the narrowest part of the permeation pathway with an estimated pore diameter of <5.8 Å. E630 was found to govern not only divalent permeability but also sensitivity of the channel to block by ruthenium red. Mutations in a hydrophobic cluster at the cytosolic termini of transmembrane segment 6, corresponding to the S6 bundle crossing structure in NaVAB, distorted channel gating. Removal of a large hydrophobic residue (I667A or I667E) generated channels with approximately 60% constitutive activity, suggesting I667 as part of the dynamic structure occluding the permeation path. Destabilization of the gate was associated with reduced Ca2+ permeability, altered cysteine cross-linking in the selectivity filter and promoted channel block by ruthenium red. Collectively, we present a structural model of the TRPC3 permeation pathway and localize the channel's selectivity filter and the occluding gate. Moreover, we provide evidence for allosteric coupling between the gate and the selectivity filter in TRPC3.  相似文献   

11.
The TRPM (transient receptor potential melastatin) family belongs to the superfamily of TRP cation channels. The TRPM subfamily is composed of eight members that are involved in diverse biological functions such as temperature sensing, inflammation, insulin secretion, and redox sensing. Since the first cloning of TRPM1 in 1998, tremendous progress has been made uncovering the function, structure, and pharmacology of this family. Complete structures of TRPM2, TRPM4, and TRPM8, as well as a partial structure of TRPM7, have been determined by cryo-EM, providing insights into their channel assembly, ion permeation, gating mechanisms, and structural pharmacology. Here we summarize the current knowledge about channel structure, emphasizing general features and principles of the structure of TRPM channels discovered since 2017. We also discuss some of the key unresolved issues in the field, including the molecular mechanisms underlying voltage and temperature dependence, as well as the functions of the TRPM channels’ C-terminal domains.  相似文献   

12.
TRPM6 and TRPM7 are two known channel kinases that play important roles in various physiological processes, including Mg2+ homeostasis. Mutations in TRPM6 cause hereditary hypomagnesemia and secondary hypocalcemia (HSH). However, whether TRPM6 encodes functional channels is controversial. Here we demonstrate several signature features of TRPM6 that distinguish TRPM6 from TRPM7 and TRPM6/7 channels. We show that heterologous expression of TRPM6 but not the mutant TRPM6(S141L) produces functional channels with divalent cation permeability profile and pH sensitivity distinctive from those of TRPM7 channels and TRPM6/7 complexes. TRPM6 exhibits unique unitary conductance that is 2- and 1.5-fold bigger than that of TRPM7 and TRPM6/7. Moreover, micromolar levels of 2-aminoethoxydiphenyl borate (2-APB) maximally increase TRPM6 but significantly inhibit TRPM7 channel activities; whereas millimolar concentrations of 2-APB potentiate TRPM6/7 and TRPM7 channel activities. Furthermore, Mg2+ and Ca2+ entry through TRPM6 is enhanced three- to fourfold by 2-APB. Collectively, these results indicate that TRPM6 forms functional homomeric channels as well as heteromeric TRPM6/7 complexes. The unique characteristics of these three channel types, TRPM6, TRPM7, and TRPM6/7, suggest that they may play different roles in vivo.  相似文献   

13.
We tested the hypothesis that key residues in a putative intraluminal loop contribute to determination of ion permeation through the intracellular Ca(2+) release channel (inositol 1,4,5-trisphosphate receptors (IP(3)Rs)) that is gated by the second messenger inositol 1,4,5-trisphosphate (IP(3)). To accomplish this, we mutated residues within the putative pore forming region of the channel and analyzed the functional properties of mutant channels using a (45)Ca(2+) flux assay and single channel electrophysiological analyses. Two IP(3)R mutations, V2548I and D2550E, retained the ability to release (45)Ca(2+) in response to IP(3). When analyzed at the single channel level; both recombinant channels had IP(3)-dependent open probabilities similar to those observed in wild-type channels. The mutation V2548I resulted in channels that exhibited a larger K(+) conductance (489 +/- 13 picosiemens (pS) for V2548I versus 364 +/- 5 pS for wild-type), but retained a Ca(2+) selectivity similar to wild-type channels (P(Ca(2+)):P(K(+)) approximately 4:1). Conversely, D2550E channels were nonselective for Ca(2+) over K(+) (P(Ca(2+)):P(K(+)) approximately 0.6:1), while the K(+) conductance was effectively unchanged (391 +/- 4 pS). These results suggest that amino acid residues Val(2548) and Asp(2550) contribute to the ion conduction pathway. We propose that the pore of IP(3)R channels has two distinct sites that control monovalent cation permeation (Val(2548)) and Ca(2+) selectivity (Asp(2550)).  相似文献   

14.
TRP (Transient Receptor Potential) cation channels of the TRPM subfamily have been found to be critically important for the regulation of Mg2+ homeostasis in both protostomes (e.g., the nematode, C. elegans, and the insect, D. melanogaster) and deuterostomes (e.g., humans). Although significant progress has been made toward understanding how the activities of these channels are regulated, there are still major gaps in our understanding of the potential regulatory roles of extensive, evolutionarily conserved, regions of these proteins. The C. elegans genes, gon-2, gtl-1 and gtl-2, encode paralogous TRP cation channel proteins that are similar in sequence and function to human TRPM6 and TRPM7. We isolated fourteen revertants of the missense mutant, gon-2(q338), and these mutations affect nine different residues within GON-2. Since eight of the nine affected residues are situated within regions that have high similarity to human TRPM1,3,6 and 7, these mutations identify sections of these channels that are potentially critical for channel regulation. We also isolated a single mutant allele of gon-2 during a screen for revertants of the Mg2+-hypersensitive phenotype of gtl-2(-) mutants. This allele of gon-2 converts a serine to phenylalanine within the highly conserved TRP domain, and is antimorphic against both gon-2(+) and gtl-1(+). Interestingly, others have reported that mutation of the corresponding residue in TRPM7 to glutamate results in deregulated channel activity.  相似文献   

15.
Mg2+ is an essential ion involved in a multitude of physiological and biochemical processes and a major constituent of bone tissue. Mg2+ homeostasis in mammals depends on the equilibrium between intestinal Mg2+ absorption and renal Mg2+ excretion, but little is known about the molecular nature of the proteins involved in the transepithelial transport of Mg2+ in these organs. Recently, it was shown that patients with mutations in TRPM6, a member of the transient receptor potential family of cation channels, suffer from hypomagnesemia with secondary hypocalcemia (HSH) as a result of impaired renal and/or intestinal Mg2+ handling. Here, we show that TRPM6 is specifically localized along the apical membrane of the renal distal convoluted tubule and the brush-border membrane of the small intestine, epithelia particularly associated with active Mg2+ (re)absorption. In kidney, parvalbumin and calbindin-D28K, two divalent-binding proteins, are co-expressed with TRPM6 and might function as intracellular Mg2+ buffers in the distal convoluted tubule. Heterologous expression of wild-type TRPM6 but not TRPM6 mutants identified in HSH patients induces a Mg2+- and Ca2+-permeable cation channel tightly regulated by intracellular Mg2+ levels. The TRPM6-induced channel displays strong outward rectification, has a 5-fold higher affinity for Mg2+ than for Ca2+, and is blocked in a voltage-dependent manner by ruthenium red. Our data indicate that TRPM6 comprises all or part of the apical Mg2+ channel of Mg2+-absorbing epithelia.  相似文献   

16.
To evaluate the role of charged residues facing a pore lumen in stability of channel structure and ion permeation, we studied electrical properties of ion channels formed by synthesized native alamethicins (Rf50 (alm-Q7Q18) and Rf30 (alm-Q7E18)) and their analogs with Glu-7 (alm-E7Q18 and alm-E7E18). The single-channel currents were measured over a pH range of 3.5 to 8.7 using planar bilayers of diphytanoyl PC. The peptides all showed multi-level current fluctuations in this pH range. At pH 3.5 the channels formed by the four peptides were similar to each other irrespective of the side chain differences at positions 7 and 18. The ionization of Glu-7 (E7) and Glu-18 (E18) above neutral pH reduced the relative probabilities of low-conductance states (levels 1 and 2) and increased those of high-conductance states (levels 4-6). The channel conductance of the peptides with E7 and/or E18, which was distinct from that of alm-Q7Q18, showed a marked pH-dependence, especially for low-conductance states. The ionization of E7 further reduced the stability of channel structure, altered the current-voltage curve from a superlinear relation to a sublinear one, and enhanced cation selectivity. These results indicate that ionized E7 strongly influences the channel structure and the ion permeation, in contrast to ionized E18.  相似文献   

17.
The TRPM subfamily of mammalian TRP channels displays unusually diverse activation mechanisms and selectivities. One member of this subfamily, TRPM5, functions in taste receptor cells and has been reported to be activated through G protein-coupled receptors linked to phospholipase C. However, the specific mechanisms regulating TRPM5 have not been described. Here, we demonstrate that TRPM5 is a monovalent-specific cation channel with a 23 pS unitary conductance. TRPM5 does not display constitutive activity. Rather, it is activated by stimulation of a receptor pathway coupled to phospholipase C and by IP(3)-mediated Ca(2+) release. Gating of TRPM5 was dependent on a rise in Ca(2+) because it was fully activated by Ca(2+). Unlike any previously described mammalian TRP channel, TRPM5 displayed voltage modulation and rapid activation and deactivation kinetics upon receptor stimulation. The most closely related protein, the Ca(2+)-activated monovalent-selective cation channel TRPM4b, also showed voltage modulation, although with slower relaxation kinetics than TRPM5. Taken together, the data demonstrate that TRPM5 and TRPM4b represent the first examples of voltage-modulated, Ca(2+)-activated, monovalent cation channels (VCAMs). The voltage modulation and rapid kinetics provide TRPM5 with an excellent set of properties for participating in signaling in taste receptors and other excitable cells.  相似文献   

18.
To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures.  相似文献   

19.
TRPM2 channels, activated by adenosine diphosphoribose and related molecules, are assembled as oligomers and most likely tetramers. However, the molecular determinants driving the subunit interaction and assembly of the TRPM2 channels are not well defined. Here we examined, using site-directed mutagenesis in conjunction with co-immunoprecipitation and patch clamp recording, the role of a coiled-coil domain in the intracellular C terminus of TRPM2 subunit in subunit interaction and channel assembly. Deletion of the coiled-coil domain resulted in severe disruption of the subunit interaction and substantial loss of the adenosine diphosphoribose-evoked channel currents. Individual or combined mutations to glutamine of the hydrophobic residues at positions a and d of the abcdef heptad repeat, key residues for protein-protein interaction, significantly reduced the subunit interaction and channel currents; the mutational effects on the subunit interaction and channel currents were clearly correlated. Furthermore, deletion of the coiled-coil domain in a pore mutant subunit abolished its dominant negative phenotypic functional suppression. These results provide strong evidence that the coiled-coil domain is critically engaged in the TRPM2 subunit interaction and such interaction is required for assembly of functional TRPM2 channel. The coiled-coil domain, which is highly conserved within the TRPM subfamily, may serve as a general structural element governing the assembly of TRPM channels.  相似文献   

20.
TRPM3 is a poorly understood member of the large family of transient receptor potential (TRP) ion channels. Here we describe five novel splice variants of TRPM3, TRPM3alpha1-5. These variants are characterized by a previously unknown amino terminus of 61 residues. The differences between the five variants arise through splice events at three different sites. One of these splice sites might be located in the pore region of the channel as indicated by sequence alignment with other, better-characterized TRP channels. We selected two splice variants, TRPM3alpha1 and TRPM3alpha2, that differ only in this presumed pore region and analyzed their biophysical characteristics after heterologous expression in human embryonic kidney 293 cells. TRPM3alpha1 as well as TRPM3alpha2 induced a novel, outwardly rectifying cationic conductance that was tightly regulated by intracellular Mg(2+). However, these two variants are highly different in their ionic selectivity. Whereas TRPM3alpha1-encoded channels are poorly permeable for divalent cations, TRPM3alpha2-encoded channels are well permeated by Ca(2+) and Mg(2+). Additionally, we found that currents through TRPM3alpha2 are blocked by extracellular monovalent cations, whereas currents through TRPM3alpha1 are not. These differences unambiguously show that TRPM3 proteins constitute a pore-forming channel subunit and localize the position of the ion-conducting pore within the TRPM3 protein. Although the ionic selectivity of ion channels has traditionally been regarded as rather constant for a given channel-encoding gene, our results show that alternative splicing can be a mechanism to produce channels with very different selectivity profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号