首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Phospholipase A2 (Naja naja) and phospholipase C (from either Clostridium welchii or Bacillus cereus) have been tested on phospholipid dispersions and natural or reconstituted membranes; notwithstanding the different substrate specificities, the different enzymes gave comparable behaviors, suggesting that the results were the expression of sterical features in the lipid bilayers, i.e., availability of the phospholipids to enzymatic attack. The hydrolysis of phospholipids (Asolectin) in sonic protein-free vesicles is hindered by ionic interaction with basic proteins (cytochrome c or lysozyme). On the other hand binding of Asolectin to lipid-depleted mitochondria to obtain reconstituted mitochondria does not prevent phospholipase action on the phospholipids; similarly, phospholipids are hydrolyzed at maximal rates in natural membranes (mitochondria or submitochondrial particles). Surprisingly, ionic interaction of RM or natural membranes with basic proteins does not prevent phospholipase hydrolysis of the membrane phospholipids. The interpretation of this phenomenon may be related to the heterogeneity of phospholipid distribution in protein-containing membranes.  相似文献   

5.
6.
Succinoxidase activity in lipid-depleted mitochondria was not restored efficiently by mixed myelin phospholipids at difference with the natural mitochondrial phospholipids, yeast phospholipids, and Asolectin. Since similar differences in activity were present between pure phosphatidyl-ethanolamine fractions separated from myelin phospholipids and Asolectin, they should be due to the different fatty acid composition of the phospholipids. In contrast with the differentability in restoration of succionoxidase, all the phospholipids studied were bound to the lipid-depleted membranes to similar extents.  相似文献   

7.
8.
Proton NMR of melittin differs according to the association state of the peptide in the monomer or tetramer. Melittin interacts with lysophosphatidyl-choline micelles, whatever the association state of melittin; well resolved superimposed spectra from both components for all the lipid to peptide molar ratios are observed. Within the complexes, local mobility and fast exchange occurs. On binding concomitant shifts on Trp19 indole lines and on the aliphatic CH2 protons of the lipids are detected. The lipid perturbation is maximum for methylene groups in a alpha and beta of the ester bond, this could allow positionning of Trp19 in the hydrophobic core of the lipids.  相似文献   

9.
10.
Butanol at a concentration of 0.35 m decreases the oligomycin sensitivity of the mitochondrial ATPase; at the same concentration of butanol the activation energy of enzyme is increased threefold. Butanol does not detach the ATPase from the membrane of either mitochondria or submitochondrial particles. The same effect is exerted by butanol on the sensitivity of the ATPase to DCCD, which is covalently bound to the ATPase complex in the oligomycin inhibition site. Diethyl ether also makes the ATPase oligomycin- and DCCD-insensitive; however, its effect on the activation energy of the enzyme is different from that of butanol, since ether does not increase the activation energy but lowers the temperature where a transition occurs in an Arrhenius plot of ATPase. The effect of both organic solvents on ATPase may be closely related to changes occurring in the lipid environment which might be transferred to the enzymic activity via a conformational change of the enzymic protein.  相似文献   

11.
Proton NMR of melittin differs according to the association state of the peptide in the monomer or tetramer. Melittin interacts with lysophosphatidylcholine micelles, whatever the association state of melittin; well resolved superimposed spectra from both components for all the lipid to peptide molar ratios are observed. Within the complexes, local mobility and fast exchange occurs. On binding concomitant shifts on Trp19 indole lines and on the aliphatic CH2 protons of the lipids are detected. The lipid perturbation is maximum for methylene groups in α and β of the ester bond, this could allow positionning of Trp19 in the hydrophobic core of the lipids.  相似文献   

12.
Fine structure of lipid-depleted mitochondria   总被引:32,自引:12,他引:20       下载免费PDF全文
The fine structure of mitochondria and submitochondrial vesicles depleted of their lipid by extraction with aqueous acetone was studied. Thin sections of mitochondrial membranes depleted of more than 95% of their lipid retained the unit membrane structure. Densitometer tracings of the electron micrographs showed that the unit membrane of extracted mitochondria was, on the average, wider than that of unextracted controls and showed a greater variation in width. The outer membrane was lost in mitochondria from which 80–95% of the lipids was extracted. Inner membrane particles were present on submitochondrial vesicles depleted of up to 85% of their lipids. However, when more than 95% of the lipid was removed, few, if any, particles remained attached to the membranes but many particles were found unattached in the background. When lipid was restored to lipid-deficient preparations, the mitochondrial membranes were found to be devoid of inner membrane particles but were fully active with respect to succinate-cytochrome c reductase activity.  相似文献   

13.
Lipid-protein interactions in lipovitellin   总被引:1,自引:0,他引:1  
Thompson JR  Banaszak LJ 《Biochemistry》2002,41(30):9398-9409
The refined molecular structure of lipovitellin is described using synchrotron cryocrystallographic data to 1.9 A resolution. Lipovitellin is the predominant lipoprotein found in the yolk of egg-laying animals and is involved in lipid and metal storage. It is thought to be related in amino acid sequence to segments of apolipoprotein B and the microsomal transfer protein responsible for the assembly of low-density lipoproteins. Lipovitellin contains a heterogeneous mixture of about 16% (w/w) noncovalently bound lipid, mostly phospholipid. Previous X-ray structural studies at ambient temperature described several different protein domains including a large cavity in each subunit of the dimeric protein. The cavity was free of any visible electron density for lipid molecules at room temperature, suggesting that only dynamic interactions exist with the protein. An important result from this crystallographic study at 100 K is the appearance of some bound ordered lipid along the walls of the binding cavity. The precise identification of the lipid type is difficult because of discontinuities in the electron density. Nonetheless, the conformations of 7 phospholipids and 43 segments of hydrocarbon chains greater than 5 atoms in length have been discovered. The conformations of the bound lipid and the interactions between protein and lipid provide insights into the factors governing lipoprotein formation.  相似文献   

14.
15.
It has recently been shown that cardiotoxin II from Naja mossambica mossambica specifically interacts with negatively charged phospholipids (Dufourcq, J. and Faucon, J.F. (1978) Biochemistry 17, 1170–1176). In order to investigate whether or not short neurotoxins give rise to similar interactions, four techniques have been used, namely intrinsic fluorescence, fluorescence polarization of 1,6-diphenylhexatriene, turbidity measurements and release of 6-carboxyfluorescein trapped inside single shelled vesicles.Neurotoxin III from Naja mossambica mossambica and neurotoxin I from the venom of the scorpion Androctonus australis Hector, specifically interact with negatively charged phospholipids leading to changes in tryptophan fluorescence and to a decrease of the fluidity of the bilayer. Cardiotoxin II from the same snake venom gives similar results. On the other hand, it seems that either a very weak or no interaction at all occurs in the case of neurotoxin I from the same Naja venom.There are important differences in the behaviour of cardiotoxin and neurotoxins: (i) neurotoxins lead to only weak release of 6-carboxyfluorescein from lipid vesicles, whereas cardiotoxin II induces fast and quantitative escape of the dye and then a general breakdown of the vesicular structure; (ii) binding of neurotoxins can be easily reversed by 100–200 mM NaCl or less than 1 mM Ca2+ and so it is essentially electrostatic, whereas binding of cardiotoxin II seems to involve some hydrophobic contribution.The short neurotoxins and cardiotoxins from snake venom having a great homology in sequence, their differences on binding properties are discussed in terms of changes in a particular area of the sequence.  相似文献   

16.
Lipid-protein interactions in membranes   总被引:4,自引:0,他引:4  
D Marsh 《FEBS letters》1990,268(2):371-375
The interactions of lipids with integral and peripheral proteins can be studied in reconstituted and natural membranes using spin label electron spin resonance (ESR) spectroscopy. The ESR spectra reveal a reduction in mobility of the spin-labelled lipid species, and in certain cases evidence is obtained for a partial penetration of the peripheral proteins into the membrane. The latter may be relevant to the import mechanism of apocytochrome c into mitochondria. Integral proteins induce a more direct motional restriction of the spin-labelled lipid chains, allowing the stoichiometry and specificity of the interaction, and the lipid exchange rate at the protein interface to be determined from the ESR spectra. In this way, a population of very slowly exchanging cardiolipin associated with the mitochondrial ADP-ATP carrier has been identified. The residues involved in the specificity for charged lipids of the myelin proteolipid protein have been localized to the deletion in the DM-20 mutant, and the difference in lipid-protein interactions with the beta-sheet and alpha-helical conformations of the M-13 coat protein, has been characterized.  相似文献   

17.
Phospholipids extracted fromSaccharomyces cerevisiae at different stages of development after glucose repression contain three major fatty acids: palmitic, palmitoleic and oleic. The ratio palmitic: palmitoleic strongly decreases beginning at the 6th hour of growth.To test the effect of fatty acid composition and in particular of unsaturation on succinoxidase activity, all these phospholipids, phospholipids from commercial yeast, and Asolectin were incubated with lipid-depleted yeast mitochondria. The amount of P bound was not much different for the various phospholipids; succinoxidase activity was restored best by Asolectin; the least effective reactivation was given by phospholipids from yeast at the middle stages of growth. There are not great differences between the various phospholipids and there is no correlation with unsaturation. If we compare the pattern of appearance of respiration during morphogenesis of yeast mitochondria with the pattern of the capability of the phospholipids from cells at different stages of mitochondrial morphogenesis to restore activity of lipid-depleted yeast mitochondria, we find no correlation. The results of this investigation are consistent with the idea that changes in phospholipids and changes in enzyme activities are not linked by a causal relation.  相似文献   

18.
19.
20.
Signal transduction via G-protein-coupled receptors (GPCRs) is a fundamental pathway through which the functions of an individual cell can be integrated within the demands of a multicellular organism. Since this family of receptors first discovered, the proteins that constitute this signaling cascade and their interactions with one another have been studied intensely. In parallel, the pivotal role of lipids in the correct and efficient propagation of extracellular signals has attracted ever increasing attention. This is not surprising given that most of the signal transduction machinery is membrane-associated and therefore lipid-related. Hence, lipid-protein interactions exert a considerable influence on the activity of these proteins. This review focuses on the post-translational lipid modifications of GPCRs and G proteins (palmitoylation, myristoylation, and isoprenylation) and their significance for membrane binding, trafficking and signaling. Moreover, we address how the particular biophysical properties of different membrane structures may regulate the localization of these proteins and the potential functional consequences of this phenomenon in signal transduction. Finally, the interactions that occur between membrane lipids and GPCR effector enzymes such as PLC and PKC are also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号