首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The alternative exon 5 of the striated muscle-specific cardiac troponin T (cTNT) gene is included in mRNA from embryonic skeletal and cardiac muscle and excluded in mRNA from the adult. The embryonic splicing pattern is reproduced in primary skeletal muscle cultures for both the endogenous gene and transiently transfected minigenes, whereas in nonmuscle cell lines, minigenes express a default exon skipping pattern. Using this experimental system, we previously showed that a purine-rich splicing enhancer in the alternative exon functions as a constitutive splicing element but not as a target for factors regulating cell-specific splicing. In this study, we identify four intron elements, one located upstream,and three located downstream of the alternative exon, which act in a positive manner to mediate the embryonic splicing pattern of exon inclusion. Synergistic interactions between at least three of the four elements are necessary and sufficient to regulate splicing of a heterologous alternative exon and heterologous splice sites. Mutations in these elements prevent activation of exon inclusion in muscle cells but do not affect the default level of exon inclusion in nonmuscle cells. Therefore, these elements function as muscle-specific splicing enhancers (MSEs) and are the first muscle-specific positive-acting splicing elements to be described. One MSE located downstream from the alternative exon is conserved in the rat and chicken cTNT genes. A related sequence is found in a third muscle-specific gene, that encoding skeletal troponin T, downstream from an alternative exon with a developmental pattern of alternative splicing similar to that of rat and chicken cTNT. Therefore, the MSEs identified in the cTNT gene may play a role in developmentally regulated alternative splicing in a number of different genes.  相似文献   

3.
4.
5.
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.  相似文献   

6.
We are using the tissue-specific splicing of myosin phosphatase targeting subunit (MYPT1) as a model to investigate smooth muscle phenotypic diversity. We previously identified a U-rich intronic enhancer flanking the 5' splice site (IE1), and a bipartite exonic enhancer/suppressor, that regulate splicing of the MYPT1 central alternative exon. Here we show that T-cell inhibitor of apoptosis (TIA-1) and T-cell inhibitor of apoptosis-related (TIAR) proteins bind to the IE1. Co-transfection of TIA expression vectors with a MYPT1 mini-gene construct increase splicing of the central alternative exon. TIA proteins do not enhance splicing when the palindromic exonic splicing enhancer (ESE) is mutated, indicating that TIAs are necessary but not sufficient for splicing. The ESE specifically binds SRp55 and SRp20 proteins, supporting a model in which both SR and TIA proteins binding to their cis-elements are required for the recruitment of the splicing complex to a weak 5' splice site. Inactivation of TIA proteins in the DT40 cell line (TIA-1(-/-)TIAR(+/-)) reduced the splicing of the central alternative exon of the endogenous MYPT1 as well as stably transfected MYPT1 minigene constructs. Splicing of the MYPT1 3' alternative exon and the MLC(17) alternative exon were unaffected, suggesting that TIA proteins regulate a subset of smooth muscle/nonmuscle alternative splicing reactions. Finally, reduced RNA binding and reduced expression of the TIA and SR proteins in phasic (gizzard) smooth muscle around hatching coincided with the switch from exon inclusion to exon skipping, suggesting that loss of TIA and SR enhancer activity may play a role in the developmental switch in MYPT1 splicing.  相似文献   

7.
Combinatorial control of a neuron-specific exon.   总被引:4,自引:1,他引:3       下载免费PDF全文
The mouse c-src gene contains a short neuron-specific exon, N1. N1 exon splicing is partly controlled by an intronic splicing enhancer sequence that activates splicing of a heterologous reporter exon in both neural and nonneural cells. Here we attempt to dissect all of the regulatory elements controlling the N1 exon and examine how these multiple elements work in combination. We show that the 3' splice site sequence upstream of exon N1 represses the activation of splicing by the downstream intronic enhancer. This repression is stronger in nonneural cells and these two regulatory sequences combine to make a reporter exon highly cell-type specific. Substitution of the 3' splice site of this test exon with sites from other exons indicates that activation by the enhancer is very dependent on the nature of the upstream 3' splice site. In addition, we identify a previously uncharacterized purine-rich sequence within exon N1 that cooperates with the downstream intronic enhancer to increase exon inclusion. Finally, different regulatory elements were tested in multiple cell lines of both neuronal and nonneuronal origin. The individual splicing regulatory sequences from the src gene vary widely in their activity between different cell lines. These results demonstrate how a simple cassette exon is controlled by a variety of regulatory elements that only in combination will produce the correct tissue specificity of splicing.  相似文献   

8.
9.
Regulated alternative splicing of avian cardiac troponin T (cTNT) pre-mRNA requires multiple intronic elements called muscle-specific splicing enhancers (MSEs) that flank the alternative exon 5 and promote muscle-specific exon inclusion. To understand the function of the MSEs in muscle-specific splicing, we sought to identify trans-acting factors that bind to these elements. MSE3, which is located 66-81 nucleotides downstream of exon 5, assembles a complex that is both sequence- and muscle-specific. Purification and characterization of the MSE3 complex identified one component as 5-aminoimidazole-4-carboxamide ribonucleotideformyltransferase/IMP cyclohydrolase (PurH), an enzyme involved in de novo purine synthesis. Recombinant human PurH protein directly binds MSE3 RNA and PurH is the primary determinant of sequence-specific binding in the native complex. Furthermore, we show a direct correlation between the in vitro binding affinity of both the MSE3 complex and recombinant PurH with functional activation of exon inclusion in vivo. Together, these results strongly suggest that PurH performs a second function as a component of a complex that regulates MSE3-dependent exon inclusion.  相似文献   

10.
11.
RNA-binding motif protein 4 (RBM4) has been implicated in the regulation of precursor mRNA splicing. Using differential display analysis, we identified mRNAs that associate with RBM4-containing messenger RNPs in vivo. Among these mRNAs, alpha-tropomyosin (alpha-TM) is known to exhibit a muscle cell type-specific splicing pattern. The level of the skeletal muscle-specific alpha-TM mRNA isoform partially correlated with that of RBM4 in human tissues examined and could be modulated by ectopic overexpression or suppression of RBM4. These results indicated that RBM4 directly influences the expression of the skeletal muscle-specific alpha-TM isoform. Using minigenes, we demonstrated that RBM4 can activate the selection of skeletal muscle-specific exons, possibly via binding to intronic pyrimidine-rich elements. By contrast, the splicing regulator polypyrimidine tract binding protein (PTB) excluded these exons; moreover, RBM4 antagonized this PTB-mediated exon exclusion likely by competing with PTB for binding to a CU-rich element. This study suggests a possible mechanism underlying the regulated alternative splicing of alpha-TM by the antagonistic splicing regulators RBM4 and PTB.  相似文献   

12.
13.
The cardiac troponin T (cTNT) pre-mRNA splices 17 exons contiguously but alternatively splices (includes or excludes) the fifth exon. Because both alternative splice products are processed from the same pre-mRNA species, the cTNT pre-mRNA must contain cis-acting sequences which specify exon 5 as an alternative exon. A cTNT minigene (SM-1) transfected into cultured cells produces mRNAs both including and excluding exon 5. The junctions of exons 4-5-6 and 4-6 in the cTNT minigene mRNAs are identical to those of endogenous cTNT mRNAs and no other exons are alternatively spliced. Thus, the SM-1 pre-mRNA is correctly alternatively spliced in transfected cells. To circumscribe the pre-mRNA regions which are required for the alternative nature of exon 5, we have constructed a systematic series of deletion mutants of SM-1. Transfection of this series demonstrates that a 1200 nt pre-mRNA region containing exons 4, 5, and 6 is sufficient to direct alternative splicing of exon 5. Within this region are two relatively large inverted repeats which potentially sequester the alternative exon via intramolecular base-pairing. Such sequestration of an alternative exon is consistent with models which propose pre-mRNA conformation as being determinative for alternative splicing of some pre-mRNAs. However, deletion mutants which remove the majority of each of the inverted repeats retain the ability to alternatively splice exon 5 demonstrating that neither is required for cTNT alternative splice site selection. Taken together, deletion analysis has limited cis elements required for alternative splicing to three small regions of the pre-mRNA containing exons 4, 5, and 6. In addition, the cTNT minigene pre-mRNA expresses both alternative splice products in a wide variety of cultured non-muscle cells as well as in cultured striated muscle cells, although expression of the cTNT pre-mRNA is normally restricted to striated muscle. This indicates that cis elements involved in defining the cTNT exon 5 as an alternative exon do not require muscle-specific factors in trans to function.  相似文献   

14.
15.
Regulation of tau exon 10 splicing plays an important role in tauopathy. One of the cis elements regulating tau alternative splicing is a stem-loop structure at the 5' splice site of tau exon 10. The RNA helicase(s) modulating this stem-loop structure was unknown. We searched for splicing regulators interacting with this stem-loop region using an RNA affinity pulldown-coupled mass spectrometry approach and identified DDX5/RNA helicase p68 as an activator of tau exon 10 splicing. The activity of p68 in stimulating tau exon 10 inclusion is dependent on RBM4, an intronic splicing activator. RNase H cleavage and U1 protection assays suggest that p68 promotes conformational change of the stem-loop structure, thereby increasing the access of U1snRNP to the 5' splice site of tau exon 10. This study reports the first RNA helicase interacting with a stem-loop structure at the splice site and regulating alternative splicing in a helicase-dependent manner. Our work uncovers a previously unknown function of p68 in regulating tau exon 10 splicing. Furthermore, our experiments reveal functional interaction between two splicing activators for tau exon 10, p68 binding at the stem-loop region and RBM4 interacting with the intronic splicing enhancer region.  相似文献   

16.
The chicken cardiac troponin T (cTNT) gene contains a single 30-nucleotide alternative exon that is included in embryonic striated muscle and skipped in the adult. Transient-transfection analysis of cTNT minigenes in muscle and fibroblast cell cultures previously identified four muscle-specific splicing enhancers (MSEs) that promote exon inclusion specifically in embryonic striated muscle cultures. Three MSEs located in the intron downstream from the alternative exon were sufficient for muscle-specific exon inclusion. In the present study, the boundaries of these MSEs were defined by scanning mutagenesis, allowing analysis of individual elements in gain-of-function experiments. Concatamers of MSE2 were necessary and sufficient to promote muscle-specific inclusion of a heterologous exon, indicating that it is a target for muscle-specific regulation. Sequences present in MSE2 are also found in MSE4, suggesting that these two MSEs act in a similar manner. MSE3 appears to be different from MSE2 and MSE4 yet is able to functionally replace both of these elements, demonstrating functional redundancy of elements that are likely to bind different factors. MSE2 and MSE4 each contain a novel sequence motif that is found adjacent to a number of alternative exons that undergo regulated splicing in striated muscle, suggesting a common role for this element in muscle-specific regulation.  相似文献   

17.
Alternative splicing regulates developmentally and tissue-specific gene expression programs, disruption of which have been implicated in numerous diseases. Muscleblind-like 1 (MBNL1) regulates splicing transitions, which are disrupted on loss of MBNL1 function in myotonic dystrophy type 1 (DM1). One such event is MBNL1-mediated activation of insulin receptor exon 11 inclusion, which requires an intronic enhancer element downstream of exon 11. The mechanism of MBNL1-mediated activation of exon inclusion is unknown. We developed an in vitro splicing assay, which robustly recapitulates MBNL1-mediated splicing activation of insulin receptor exon 11 and found that MBNL1 activates removal of the intron upstream of exon 11 upon binding its functional response element in the downstream intron. MBNL1 enhances early spliceosome assembly as evidenced by enhanced complex A formation and binding of U2 small nuclear ribonucleoprotein auxiliary factor 65 kDa subunit (U2AF65) on the upstream intron. We demonstrated that neither the 5′ splice site nor exon 11 sequences are required for MBNL1-activated U2AF65 binding. Interestingly, the 5′ splice site is required for MBNL1-mediated activation of upstream intron removal, although MBNL1 has no effect on U1 snRNA recruitment. These results suggest that MBNL1 directly activates binding of U2AF65 to enhance upstream intron removal to ultimately activate alternative exon inclusion.  相似文献   

18.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

19.
We have characterized a novel positive-acting splicing element within the developmentally regulated alternative exon (exon 5) of the cardiac troponin T (cTNT) gene. The exon splicing element (ESE) is internal to the exon portions of the splice sites and is required for splicing to the 3' splice site but not the 5' splice site flanking the exon. Sequence comparisons between cTNT exon 5 and other exons that contain regions required for splicing reveal a common purine-rich motif. Sequence within cTNT exon 5 or a synthetic purine-rich motif facilitates splicing of heterologous alternative and constitutive splice sites in vivo. Interestingly, the ESE is not required for the preferential inclusion of cTNT exon 5 observed in primary skeletal muscle cultures. Our results strongly suggest that the purine-rich ESE serves as a general splicing element that is recognized by the constitutive splicing machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号