首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the relative importance of convection and diffusion in the transport of oxygen in the pulmonary acinus, it is often useful to locate the transition from convection-dominated to diffusion-dominated transport. Traditionally, this is done by estimating the values of a Peclet number. This dimensionless number compares the bulk ductal flow velocity at an acinar generation with a diffusion velocity over a characteristic length scale. Here, we revisit the convection–diffusion transition by comparing the relative importance of convective and diffusive lengths. We introduce the ratio of such lengths (Lconv/Ldiff) to quantify the extent of convective transport in the acinus over an inhalation phase. We distinguish between convection along the acinar airways and within alveoli, respectively. Results for Lconv/Ldiff suggest that convection in acinar ducts may play a potential role in more peripheral airways compared with values obtained for a Peclet number. Within alveoli, however, independent of acinar depth, oxygen transport is governed by diffusion as soon as molecules enter within alveolar cavities.  相似文献   

2.
3.
4.
Knowledge of liquid secretion by fetal lung stems from studies of sheep. We extended these studies to dogs and examined the persistence of the fetal pattern of airway epithelial permeability and ion transport in the neonatal animal. Plasma and lung liquid from fetal dogs were analyzed for Na+, K+, Cl-, and HCO3-. Only the Cl- concentration of fetal lung liquid (129 meq/l) was significantly different from that of fetal plasma (111 meq/l). Segments of trachea from fetal and neonatal (less than 1, 7-10, and 21-46 days after birth) dogs were excised and mounted in flux chambers. The transepithelial potential difference (PD) of all tissues was oriented lumen negative (9.8-14.8 mV). Under short-circuit conditions, unidirectional Na+ flows were symmetrical. Cl- was secreted, and the secretion was equivalent to short-circuit current (Isc). Cl- secretion persisted under open-circuit conditions. Lobar bronchi from 21- to 46-day neonates absorbed Na+ (1.9 mueq.cm-2.h-1), but unidirectional flows of Cl- were symmetrical. Amiloride (10(-4) M) reduced Isc of neonatal bronchi by 47% but did not affect fetal bronchi. Isoproterenol increased Isc of both fetal (33%) and neonatal (40%) bronchi. These responses suggest that fetal bronchi do not absorb Na+ but can be stimulated to secrete Cl-. We conclude that Cl- secretion by epithelium of large airways may contribute to fetal lung liquid production, but it is unlikely that the tracheal epithelium is involved in fluid absorption at birth. Whereas fetal bronchi appear to secrete Cl-, neonatal bronchi absorb Na+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
An analysis of pollutant gas transport and absorption in pulmonary airways   总被引:1,自引:0,他引:1  
A mathematical model of ozone absorption, or for any soluble gas that has similar transport properties, is developed for a branching network of liquid-lined cylinders. In particular, we investigate specific flow regimes for finite length tubes where boundary layer phenomena and entrance effects exist in high Reynolds and Peclet (Pe) number airways. The smaller airways which have lower Reynolds and Peclet number flows are modelled by incorporating the detailed analysis found in [10] and modifying it for airways which have alveolated surfaces. We also consider a reacting gas and treat specific regimes where the reaction front is located at the air-liquid interface, within the liquid or at the liquid-tissue interface. Asymptotic methods are used in regions of the tracheobronchial tree where Pe much less than 1 and Pe much greater than 1. In addition, the fact that the radial transport parameter gamma much less than 1 for this toxin, and others such as nitrous oxides, is employed to simplify the analysis. The ozone concentrations, airway absorption and tissue dose are examined as a function of airway generation for several values of the governing parameters. The general result is a maximal dosing in airway generations 17 to 18 that is much larger (up to an order of magnitude) than the predictions of previous theories.  相似文献   

6.
During exercise, fatigue is defined as a reversible reduction in force- or power-generating capacity and can be elicited by "central" and/or "peripheral" mechanisms. During skeletal muscle contractions, both aspects of fatigue may develop independent of alterations in convective O(2) delivery; however, reductions in O(2) supply exacerbate and increases attenuate the rate of accumulation. In this regard, peripheral fatigue development is mediated via the O(2)-dependent rate of accumulation of metabolic by-products (e.g., inorganic phosphate) and their interference with excitation-contraction coupling within the myocyte. In contrast, the development of O(2)-dependent central fatigue is elicited 1) by interference with the development of central command and/or 2) via inhibitory feedback on central motor drive secondary to the peripheral effects of low convective O(2) transport. Changes in convective O(2) delivery in the healthy human can result from modifications in arterial O(2) content, blood flow, or a combination of both, and they can be induced via heavy exercise even at sea level; these changes are exacerbated during acute and chronic exposure to altitude. This review focuses on the effects of changes in convective O(2) delivery on the development of central and peripheral fatigue.  相似文献   

7.
The influence of drugs on ciliary beat frequency in the intrapulmonary airways of rats was studied in vitro. Sympathomimetic drugs significantly increased the ciliary beat frequency. Acetylcholine, pilocarpine, aminophylline, prednisolone, potassium iodide, and ammonium chloride also caused cilioexcitation, though to a lesser degree. Phentolamine, 5-hydroxytryptamine, histamine, and acetylcysteine caused an apparent cilioinhibition. However, histamine in high doses also caused an incoordination of ciliary beat. Codeine and phenobarbital were slightly cilioexcitatory in low concentrations and ciliodepressive at higher concentrations.  相似文献   

8.
In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.  相似文献   

9.
10.
A discrete one-dimensional model of convection-diffusion in branching alveolar ducts is described and it is shown that, for a suitable choice of effective axial dispersion, the solution closely approximates that for an axially symmetric representation, at least for Peclet numbers Pe<1. Following earlier work a composite model of a uniform lung is formed by matching such a respiratory pathway (now having the more convenient one-dimensional form) onto a trumpet representation of the conducting airways. Enhanced mixing due to heart action, and isotropic volume changes of trumpet (in addition to the pathway) during breathing are additional factors included. Calculations are made of O2 concentrations during steady-state breathing and of the concentration of inert gas during single breath wash-out of a gas mixture containing it. Predicted alveolar levels in each case agree extremely well with published data, although no alveolar slope is obtained for the inert gas.  相似文献   

11.
12.
In athletic animals the spleen induces acute polycythemia by dynamic contraction that releases red blood cells into the circulation in response to increased O(2) demand and metabolic stress; when energy demand is relieved, the polycythemia is rapidly reversed by splenic relaxation. We have shown in adult foxhounds that splenectomy eliminates exercise-induced polycythemia, thereby reducing peak O(2) uptake and lung diffusing capacity for carbon monoxide (DL(CO)) as well as exaggerating preexisting DL(CO) impairment imposed by pneumonectomy (Dane DM, Hsia CC, Wu EY, Hogg RT, Hogg DC, Estrera AS, Johnson RL Jr. J Appl Physiol 101: 289-297, 2006). To examine whether the postsplenectomy reduction in DL(CO) leads to abnormalities in O(2) diffusion, ventilation-perfusion inequality, or hemodynamic function, we studied these animals via the multiple inert gas elimination technique at rest and during exercise at a constant workload equivalent to 50% or 80% of peak O(2) uptake while breathing 21% and 14% O(2) in balanced order. From rest to exercise after splenectomy, minute ventilation was significantly elevated with respect to O(2) uptake compared with exercise before splenectomy; cardiac output, O(2) delivery, and mean pulmonary and systemic arterial blood pressures were 10-20% lower, while O(2) extraction was elevated with respect to O(2) uptake. Ventilation-perfusion inequality was unchanged, but O(2) diffusing capacities of lung (DL(O2)) and peripheral tissue during exercise were lower with respect to cardiac output postsplenectomy by 32% and 25%, respectively. The relationship between DL(O2) and DL(CO) was unchanged by splenectomy. We conclude that the canine spleen regulates both convective and diffusive O(2) transport during exercise to increase maximal O(2) uptake.  相似文献   

13.
14.
The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86: 1460-1467, 1999) and experimental findings in horses of a postsplenectomy reduction in peripheral O2-diffusing capacity (Wagner PD, Erickson BK, Kubo K, Hiraga A, Kai M, Yamaya Y, Richardson R, and Seaman J. Equine Vet J 18, Suppl: 82-89, 1995), we hypothesized that splenic contraction also augments diffusive O2 transport in the lung. Therefore, we have measured lung diffusing capacity (DL(CO)) and its components during exercise by a rebreathing technique in six adult foxhounds before and after splenectomy. Splenectomy eliminated exercise-induced polycythemia, associated with a 30% reduction in maximal O2 uptake. At any given pulmonary blood flow, DL(CO) was significantly lower after splenectomy owing to a lower membrane diffusing capacity, whereas pulmonary capillary blood volume changed variably; microvascular recruitment, indicated by the slope of the increase in DL(CO) with respect to pulmonary blood flow, was also reduced. We conclude that splenic contraction enhances both convective and diffusive O2 transport and provides another compensatory mechanism for maintaining alveolar O2 transport in the presence of restrictive lung disease or ambient hypoxia.  相似文献   

15.
16.
17.
18.
Arachidonic acid evokes epithelium-dependent relaxations in canine airways   总被引:2,自引:0,他引:2  
Responses to arachidonate were examined in rings with and without epithelium of lobar, segmental, and subsegmental canine bronchi. Arachidonate evoked epithelium-dependent relaxations, which were less pronounced in subsegmental bronchi and abolished by indomethacin and meclofenamate. Nordihydroguairetic acid (NDGA) and nafazatrom reduced epithelium-dependent relaxations only in lobar but unmasked epithelium-independent relaxations to arachidonate in all bronchi. Prostaglandin E2 and prostacyclin relaxed all tissues similarly. In lobar bronchi without epithelium, basal release of prostaglandin E2 was reduced by indomethacin but unaffected by NDGA. Arachidonate augmented prostaglandin E2 release more in subsegmental than in lobar bronchi with epithelium; in bronchi without epithelium the rise was absent (lobar) or attenuated (subsegmental). Arachidonate augmented the release of 6-ketoprostaglandin F1 alpha more in lobar bronchi with than without epithelium; this was inhibited by indomethacin, but not NDGA. Thus arachidonate releases prostaglandin E2 (possibly produced by cyclooxygenase inaccessible to inhibitors and activated by lipoxygenase products) but not prostacyclin from the epithelium. Heterogeneity in response to arachidonate is not due to different sensitivity to, or production of, prostaglandins.  相似文献   

19.
Previous work showed that individual airway size, before any spasmogen, varied widely in the same animals on different days. The effect of this variable baseline size on the airway response to a subsequent challenge is unknown. The present study examined how the variability in individual airway baseline size in dogs was related to that after methacholine challenge on 4 different days using high-resolution computed tomography scans. Dogs were anesthetized and ventilated, and on 4 separate days randomly varying between 1 and 8 wk apart, baseline scans were acquired, followed by a continuous intravenous infusion of methacholine at three rates in increasing order (17, 67, and 200 microg/min). As the measure of variability, we used the coefficient of variation (CV) of the four airway luminal measurements of each airway at baseline and at each dose of methacholine. For most airways, there was wide variability both between and within dogs in the response to a given dose of methacholine (CV = 33-38%). Airways with any level of methacholine stimulation had greater variability than those at baseline. The airway variability was greatest at the lowest dose of methacholine administered but was elevated at all the doses. In conclusion, there was substantial day-to-day variability in baseline airway size. Most importantly, the same dose of methacholine to the same individual airway showed even greater variability than that at baseline. If we consider that increased heterogeneity may potentiate clinical symptoms, then airway response variability may play an important role in the manifestation of airway disease.  相似文献   

20.
Aerosol transport and deposition in sequentially bifurcating airways   总被引:1,自引:0,他引:1  
Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow with symmetry about the first bifurcation. Particle diameters of 3, 5, and 7 microns were used in the simulation, while the inlet Stokes and Reynolds numbers varied from 0.037 to 0.23 and 500 to 2000, respectively. Comparisons between these results and experimental data based on the same geometric configuration showed good agreement. The overall trend of the particle deposition efficiency, i.e., an exponential increase with Stokes number, was somewhat similar for all bifurcations. However, the deposition efficiency of the first bifurcation was always larger than that of the second bifurcation, while in general the particle efficiency of the out-of-plane configuration was larger than that of the in-plane configuration. The local deposition patterns consistently showed that the majority of the deposition occurred in the carinal region. The distribution pattern in the first bifurcation for both configurations were symmetric about the carina, which was a direct result of the uniaxial flow at the inlet. The deposition patterns about the second carina showed increased asymmetry due to highly nonuniform flow generated by the first bifurcation and were extremely sensitive to bifurcation orientation. Based on the deposition variations between bifurcation levels and orientations, the use of single bifurcation models was determined to be inadequate to resolve the complex fluid-particle interactions that occur in multigenerational airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号