首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an in vitro system comprising a yeast cell-free translation system, yeast microsomes and mRNA encoding prepro-alpha-factor, the translocation of this protein across the membrane of the microsomal vesicle and its glycosylation could b uncoupled from its translation. Such post-translational processing is dependent upon the presence of ATP in the system. It is not, however, affected by a variety of uncouplers, ionophores or inhibitors, including carbonyl cyanide m-chlorophenyl hydrazone (CCCP), valinomycin, nigericin, dinitrophenol (DNP), potassium cyanide (KCN) or N-ethyl maleimide (NEM). This mechanism of translocation is significant as it indicates that a protein of 18 000 daltons is capable of crossing an endoplasmic reticulum-derived membrane post-translationally. For the moment, this phenomenon seems to be restricted to prepro-alpha-factor in the yeast in vitro system. Neither invertase nor IgG chi light chain could be translocated post-translationally in yeast, nor was such processing observed for prepro-alpha-factor in a wheat germ system supplemented with canine pancreatic microsomes.  相似文献   

2.
W Hansen  P D Garcia  P Walter 《Cell》1986,45(3):397-406
The in vitro synthesized precursor of the alpha-factor pheromone, prepro-alpha-factor, of Saccharomyces cerevisiae was translocated across yeast microsomal membranes in either a homologous or a wheat germ cell free system. Translocated prepro-alpha-factor was glycosylated, sedimented with yeast microsomal vesicles, and was protected from digestion by added protease, but was soluble after alkaline sodium carbonate treatment. Thus prepro-alpha-factor was properly sequestered within yeast microsomal vesicles, but was not integrated into the lipid bilayer. In marked contrast to protein translocation across mammalian microsomal membranes, translocation of prepro-alpha-factor across yeast microsomal membranes could occur posttranslationally. This reaction required protein components in the yeast microsomal fraction that could be inactivated by alkylation or proteolysis, was ATP-dependent, and was insensitive to the presence of a variety of uncouplers and ionophores.  相似文献   

3.
We have determined that prepro-carboxypeptidase Y and a truncated form of pre-invertase can be translocated across the yeast microsomal membrane post-translationally in a homologous in vitro system. The yeast secretory protein prepro-alpha-factor which was previously shown to be an efficient posttranslational translocation substrate is therefore not unique in this regard, but rather the yeast ER protein translocation machinery is generally capable of accepting substrates from a ribosome-free, soluble pool. However, within our detection limits, full-length pre-invertase could not be translocated posttranslationally, but was translocated co-translationally. This indicates that not every fully synthesized pre-protein can use this pathway, presumably because normal or aberrant folding characteristics can interfere with translocation competence.  相似文献   

4.
The prepro sequence of the yeast prepro-alpha-factor, usually referred to as the alpha-factor leader, has often been used for the efficient secretion of heterologous proteins from the yeast Saccharomyces cerevisiae. The alpha-factor leader consists of a 19-amino acid N-terminal pre or signal sequence followed by a 66-amino acid proregion. After removal of the signal sequence during membrane translocation, the proregion is cleaved from the precursor protein by the Kex2 endoprotease only in a late Golgi compartment. Here we report that a modified Kex2 enzyme, containing at the C-terminus the HDEL tetrapeptide, cleaves the proregion from the alpha-factor leader--human insulin like growth factor-1 fusion protein in the endoplasmic reticulum. The processing of pro-proteins earlier in the secretion pathway could be helpful in defining the cellular function of the proregions present naturally in various eucaryotic precursor proteins.  相似文献   

5.
The effects of five single-amino-acid substitution mutations within the signal sequence of yeast prepro-alpha-factor were tested in yeast cells. After short pulse-labelings, virtually all of the alpha-factor precursor proteins from a wild-type gene were glycosylated and processed by signal peptidase. In contrast, the signal sequence mutations resulted in the accumulation of mostly unglycosylated prepro-alpha-factor after a short labeling interval, indicating a defect in translocation of the protein into the endoplasmic reticulum. Confirming this interpretation, unglycosylated mutant prepro-alpha-factor in cell extracts was sensitive to proteinase K and therefore in a cytosolic location. The signal sequence mutations reduced the rate of translocation into the endoplasmic reticulum by as much as 25-fold or more. In at least one case, mutant prepro-alpha-factor molecules were translocated almost entirely posttranslationally. Four of the five mutations also reduced the rate of proteolytic processing by signal peptidase in vivo, even though the signal peptide alterations are not located near the cleavage site. This study demonstrates that a single-amino-acid substitution mutation within a eucaryotic signal peptide can affect both translocation and proteolytic processing in vivo and may indicate that the recognition sequences for translocation and processing overlap within the signal peptide.  相似文献   

6.
The Saccharomyces cerevisiae mating pheromone precursor, prepro-alpha-factor, can be translocated across yeast endoplasmic reticulum membranes post-translationally in an in vitro system. This characteristic makes prepro-alpha-factor potentially useful as a probe in the biochemical dissection of the mechanism of this basic cellular process. Efforts have been limited by the inability to isolate sufficient quantities of such secretory protein precursors in a translocation-competent form. We report here the one-step purification of chemical amounts of translocation-competent prepro-alpha-factor using nickel ion affinity chromatography on nitrilotriacetate resin. An oligonucleotide encoding 6 histidine residues was inserted into a genomic clone encoding prepro-alpha-factor 5' of the naturally occurring translational stop codon by site-directed mutagenesis. The construct was expressed at high levels in a SecY- strain of Escherichia coli. The produced preprotein was solubilized in 6 M guanidine hydrochloride and bound to nitrilotriacetate resin. Prepro-alpha-factor was recovered at a purity in excess of 95% by elution with 0.25 M imidazole, 8 M urea, which competitively displaced the histidine affinity tag from the nickel column. The chemical amounts of prepro-alpha-factor obtained in this way were determined to be competent for translocation across yeast microsomal membranes and for subsequent modifications such as signal sequence cleavage and N-linked glycosylation.  相似文献   

7.
We used a genetic approach to identify point mutations in the signal sequence of a secreted eucaryotic protein, yeast alpha-factor. Signal sequence mutants were obtained by selecting for cells that partially mistargeted into mitochondria a fusion protein consisting of the alpha-factor signal sequence fused to the mature portion of an imported mitochondrial protein (Cox IV). The mutations resulted in replacement of a residue in the hydrophobic core of the signal sequence with either a hydrophilic amino acid or a proline. After reassembly into an intact alpha-factor gene, the substitutions were found to decrease up to 50-fold the rate of translocation of prepro-alpha-factor across microsomal membranes in vitro. Two of three mutants tested produced lower steady-state levels of alpha-factor in intact yeast cells, although the magnitude of the effect was less than that in the cell-free system.  相似文献   

8.
Prepro-alpha-factor has a cleavable signal sequence   总被引:11,自引:0,他引:11  
MAT alpha Saccharomyces cerevisiae secrete a small peptide mating pheromone termed alpha-factor. Its precursor, prepro-alpha-factor, is translocated into the endoplasmic reticulum and glycosylated at three sites. The glycosylated form is the major product in a yeast in vitro translation/translocation system. However, there is another translocated, nonglycosylated product that contains a previously unidentified modification. Contrary to previous results suggesting that the signal sequence of prepro-alpha-factor is not cleaved, amino-terminal radiosequencing has identified this product as prepro-alpha-factor without its signal sequence, that is, pro-alpha-factor. The translocated, glycosylated proteins are also processed by signal peptidase. Moreover, we have found that both purified eukaryotic and prokaryotic signal peptidase can process prepro-alpha-factor. Experiments using a yeast secretory mutant (sec 18) blocked in transport from the endoplasmic reticulum to the Golgi indicate that the protein is also cleaved in vivo. Finally, characterization of the Asn-linked oligosaccharide present on pro-alpha-factor in the yeast in vitro system by use of specific glucosidase and mannosidase inhibitors indicates that they have had the three terminal glucoses and probably one mannose removed. Therefore they most likely consist of Man8GlcNAc2 structures, identical to those found in the endoplasmic reticulum in vivo.  相似文献   

9.
10.
A particulate translation system isolated from the yeast Saccharomyces cerevisiae was shown to translate faithfully in-vitro-transcribed mRNA coding for a mating hormone precursor (prepro-alpha-factor mRNA) and to N-glycosylate the primary translation product after its translocation into the lumen of the microsomal vesicles. Glycosylation of its three potential sugar attachment sites was found to be competitively inhibited by acceptor peptides containing the consensus sequence Asn-Xaa-Thr, supporting the view that the glycan chains are N-glycosidically attached to the prepro-alpha-factor polypeptide. The accumulation in the presence of acceptor peptides of a membrane-specific, unglycosylated translation product (pp-alpha-F0) differing in molecular mass from a cytosolically located, protease-K-sensitive alpha-factor polypeptide (pp-alpha-Fcyt) by about 1.3 kDa, suggests that, in contrast to previous reports, a signal sequence is cleaved from the mating hormone precursor on/after translocation. This conclusion is supported by the observation that the multiply glycosylated alpha-factor precursor is cleaved by endoglucosaminidase H to a product with a molecular mass smaller than the primary translation product pp-alpha-Fcyt but larger than the membrane-specific pp-alpha-F0. Translation and glycosylation experiments carried out in the presence of various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-1-deoxynojirimyin and 1-deoxymannojirimycin) indicate that the N-linked oligosaccharide chains of the glycosylated prepro-alpha-factor species are extensively processed under the in vitro conditions of translation. From the specificity of the glycosidase inhibitors applied and the differences in the molecular mass of the glycosylated translation products generated in their presence, we conclude that the glycosylation-competent microsomes contain trimming enzymes, most likely glucosidase I, glucosidase II and a trimming mannosidase, which process the prepro-alpha-factor glycans down to the (Man)8(GlcNAc)2 stage. Furthermore, several arguments strongly suggest that these three enzymes, which apparently represent the full array of trimming activities in yeast, are exclusively located in the lumen of microsomal vesicles derived from endoplasmic reticulum membranes.  相似文献   

11.
We have shown that hybrid proteins composed of the yeast repressible acid phosphatase (PHO5) and bacterial beta-galactosidase (lacZ) interfere with secretion of native acid phosphatase (Wolfe, P. B. (1988) J. Biol. Chem. 263, 6908-6915). We now report that PHO5-LacZ hybrid proteins have a more general effect on secretion and prevent translocation of several secreted proteins. Translocation of both the mating pheromone alpha-factor and the vacuolar protease carboxypeptidase Y is partially blocked when PHO5-LacZ hybrids are expressed. Cell fractionation and protease sensitivity indicate that alpha-factor and carboxypeptidase Y accumulate in precursor form on the cytoplasmic surface of the endoplasmic reticulum. Indirect immunofluorescence with antibody directed against beta-galactosidase supports the localization of hybrid proteins to the endoplasmic reticulum. Analysis of the hybrid protein phenotype in vivo and in vitro suggests that the hybrid proteins deplete a soluble factor required for efficient translocation across the endoplasmic reticulum. First, a decrease in the expression of a hybrid protein in vivo decreases its effect on translocation. Second, an in vitro translation/translocation reaction, prepared from a hybrid-bearing strain, is deficient in its ability to translocate prepro-alpha-factor across yeast microsomal membranes. This deficiency is complemented by addition of cytosol prepared from wild type cells. Finally, the hybrid protein phenotype is shown to be independent of the requirement for SSA gene products.  相似文献   

12.
We describe an in vitro system with all components derived from the yeast Saccharomyces cerevisiae that can translocate a yeast secretory protein across microsomal membranes. In vitro transcribed prepro-alpha-factor mRNA served to program a membrane-depleted yeast translation system. Translocation and core glycosylation of prepro-alpha-factor were observed when yeast microsomal membranes were added during or after translation. A membrane potential is not required for translocation. However, ATP is required for translocation and nonhydrolyzable analogues of ATP cannot serve as a substitute. These findings suggest that ATP hydrolysis may supply the energy required for translocation of proteins across the endoplasmic reticulum.  相似文献   

13.
Of central importance to studying protein translocation via a combined genetic and biochemical approach is the in vitro analysis of yeast conditionally-lethal secretory mutants. Analysis of sec53 presented an opportunity not only to see if mutants could be examined in recently developed yeast in vitro translocation systems, but also to characterize further the nature of this mutant originally postulated to be defective in protein translocation. Membranes from sec53 were capable of translocating and glycosylating nascent prepro-alpha-factor in vitro in both sec53 and wild-type lysates at temperatures that were non-permissive for growth of the mutant cells. These results suggested that the Sec53 protein does not function directly in the translocation and glycosylation of prepro-alpha-factor. To examine this point further, we isolated membranes from sec53 cells that had been grown at the non-permissive temperature prior to disruption. In such cases, regardless of assay temperature, membranes from sec53 cells efficiently translocated but failed to glycosylate prepro-alpha-factor in vitro. The in vitro phenotype of sec53 could be mimicked by isolating rough microsomes from wild-type cells that had been grown for 1 h in the presence of tunicamycin. Together, these results demonstrate that sec53 is not defective in translocation, rather in assembly of the dolichol-oligosaccharide substrate needed for N-linked glycosylation.  相似文献   

14.
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.  相似文献   

15.
Using either permeabilized cells or microsomes we have reconstituted the early events of the yeast secretory pathway in vitro. In the first stage of the reaction approximately 50-70% of the prepro-alpha-factor, synthesized in a yeast translation lysate, is translocated into the endoplasmic reticulum (ER) of permeabilized yeast cells or directly into yeast microsomes. In the second stage of the reaction 48-66% of the ER form of alpha-factor (26,000 D) is then converted to the high molecular weight Golgi form in the presence of ATP, soluble factors and an acceptor membrane fraction; GTP gamma S inhibits this transport reaction. Donor, acceptor, and soluble fractions can be separated in this assay. This has enabled us to determine the defective fraction in sec23, a secretory mutant that blocks ER to Golgi transport in vivo. When fractions were prepared from mutant cells grown at the permissive or restrictive temperature and then assayed in vitro, the acceptor Golgi fraction was found to be defective.  相似文献   

16.
C-tail-anchored proteins are defined by an N-terminal cytosolic domain followed by a transmembrane anchor close to the C terminus. Their extreme C-terminal polar residues are translocated across membranes by poorly understood post-translational mechanism(s). Here we have used the yeast system to study translocation of the C terminus of a tagged form of mammalian cytochrome b(5), carrying an N-glycosylation site in its C-terminal domain (b(5)-Nglyc). Utilization of this site was adopted as a rigorous criterion for translocation across the ER membrane of yeast wild-type and mutant cells. The C terminus of b(5)-Nglyc was rapidly glycosylated in mutants where Sec61p was defective and incapable of translocating carboxypeptidase Y, a well known substrate for post-translational translocation. Likewise, inactivation of several other components of the translocon machinery had no effect on b(5)-Nglyc translocation. The kinetics of translocation were faster for b(5)-Nglyc than for a signal peptide-containing reporter. Depletion of the cellular ATP pool to a level that retarded Sec61p-dependent post-translational translocation still allowed translocation of b(5)-Nglyc. Similarly, only low ATP concentrations (below 1 microm), in addition to cytosolic protein(s), were required for in vitro translocation of b(5)-Nglyc into mammalian microsomes. Thus, translocation of tail-anchored b(5)-Nglyc proceeds by a mechanism different from that of signal peptide-driven post-translational translocation.  相似文献   

17.
J Toyn  A R Hibbs  P Sanz  J Crowe    D I Meyer 《The EMBO journal》1988,7(13):4347-4353
Mutants defective in the ability to translocate proteins across the membrane of the endoplasmic reticulum were selected in Trp- Saccharomyces cerevisiae on the basis of their ability to retain a fusion protein in the cytosol. The fusion comprised the prepro region of prepro-alpha-factor (MF alpha 1) N-terminal to phosphoribosyl anthranilate isomerase (TRP1). The first of the protein translocation mutations, called ptl1, results in temperature-sensitivity of growth and protein translocation. At the non-permissive temperature, precursors to several secretory proteins accumulate in the cytosol. Using this mutant, we demonstrate that the prepro-carboxypeptidase Y that had been accumulated in the cytosol at the non-permissive temperature could be post-translationally translocated into the endoplasmic reticulum when cells were returned to the permissive temperature. This result indicates that post-translational translocation of preproteins across endoplasmic reticulum membranes can occur in vivo. We have also determined that the temperature-sensitive component is membrane-associated in ptl1, and that the membranes derived from this strain show a reversible temperature-sensitive translocation phenotype in vitro.  相似文献   

18.
P Sanz  D I Meyer 《The EMBO journal》1988,7(11):3553-3557
When affinity-purified proOmpA was diluted out of 8 M urea into a sample of yeast microsomes, it was translocated and processed in the absence of any cytosolic factors; an intact membrane and ATP were the only requirements. The translocation competence of proOmpA was lost, however, during a 15-h incubation at 0 degrees C. The competence was retained when trigger factor and a yeast cytosolic extract were present during incubations at 0 degrees C. The same reactions were carried out with affinity-purified prepro-alpha-factor, and the same results were obtained with the exception that trigger factor was not required. When the various cytosolic factors were replaced with SRP, the addition of yeast microsomes after 15 h resulted in the translocation and processing (and glycosylation) of both proOmpA and prepro-alpha-factor. Pancreatic microsomes were also used in this type of assay, and it was found that proOmpA (but not prepro-alpha-factor) could be translocated when diluted out of urea. In this case, as with yeast microsomes, translocation competence was maintained by SRP. These results show that in addition to a recognition and targeting function, SRP can stabilize the translocation-competent conformation of pre-secretory proteins in vitro for translocation across eukaryotic membranes.  相似文献   

19.
We have previously shown that fully synthesized prepro-alpha-factor (pp alpha F), the precursor for the yeast pheromone alpha-factor, can be translocated posttranslationally across yeast rough microsomal (RM) membranes from a soluble, ribosome-free pool. We show here that this is not the case for translocation of pp alpha F across mammalian RM. Rather we found that a small amount of translocation of full-length pp alpha F is observed, but is solely due to polypeptide chains that were still ribosome bound and covalently attached to tRNA, i.e., not terminated. In addition, both signal recognition particle (SRP) and SRP receptor are required, i.e., the same targeting machinery that is normally responsible for the coupling between protein synthesis and translocation. Thus, the molecular requirements for targeting are distinct from posttranslational translocation across yeast RM. As termination is generally regarded as part of translation, the translocation of full-length pp alpha F across mammalian RM does not occur "posttranslationally," albeit independent of elongation. Most other proteins for which posttranslational translocation across mammalian RM was previously claimed fall into the same category in that ribosome attachment as peptidyl-tRNA is required. To clearly separate these two distinct processes, we suggest that the term posttranslational be reserved for those processes that occur in the complete absence of the translational machinery. We propose the term "ribosome-coupled translocation" for the events described here.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号