首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
SYNOPSIS. The amphibian skin possesses a wide variety of physiologicalfunctions in that it constitutes not only the major organ forrespiratory CO2 exchange but also plays important roles forionic as well as osmotic balance. Apart from the simple transcutaneousdiffusion of CO2 down its partial pressure gradient, acid-baserelevant ion exchange mechanisms in the skin may also be importantin overall pH regulation in these animals. The skin of somefrogs, for example, contains mechanisms for the exchange ofNa$/H$ and HCO3/Cl in which NaCl is actively transportedinto the animal in exchange for H$ and HCO3. While suchexchange mechanisms have often been studied in the context ofosmoregulation in freshwater environments, their potential importancein acid-base regulation have been largely unexplored. The presentpaper reviews the evidence for participation of cutaneous iontransfer mechanisms in the overall regulation of CO2 excretionand acid-base balance in amphibians.  相似文献   

2.
Sodium-independent Cl movement (i.e., Cl-anion exchange) has not previously been identified in the basolateral membranes of rat colonic epithelial cells. The present study demonstrates Cl-HCO3 exchange as the mechanism for 36Cl uptake in basolateral membrane vesicles (BLMV) prepared in the presence of a protease inhibitor cocktail from rat distal colon. Studies of 36Cl uptake performed with BLMV prepared with different types of protease inhibitors indicate that preventing the cleavage of the COOH-terminal end of AE2 protein by serine-type proteases was responsible for the demonstration of Cl-HCO3 exchange. In the absence of voltage clamping, both outward OH gradient (pHout/pHin: 7.5/5.5) and outward HCO3 gradient stimulated transient 36Cl uptake accumulation. However, voltage clamping with K-ionophore, valinomycin, almost completely (87%) inhibited the OH gradient-driven 36Cl uptake, whereas HCO3 gradient-driven 36Cl uptake was only partially inhibited (38%). Both electroneutral HCO3 and OH gradient-driven 36Cl uptake were 1) completely inhibited by DIDS, an anion exchange inhibitor, with a half-maximal inhibitory constant (Ki) of 26.9 and 30.6 µM, respectively, 2) not inhibited by 5-nitro-2-(3-phenylpropylamino)benzoic acid(NPPB), a Cl channel blocker, 3) saturated by increasing extravesicular Cl concentration with a Km for Cl of 12.6 and 14.2 mM, respectively, and 4) present in both surface and crypt cells. Intracellular pH (pHi) was also determined with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-acetomethylester (BCECF-AM) in an isolated superfused crypt preparation. Removal of Cl resulted in a DIDS-inhibitable increase in pHi both in HCO3-buffered and in the nominally HCO3-free buffered solutions (0.28 ± 0.02 and 0.11 ± 0.02 pH units, respectively). We conclude that a carrier-mediated electroneutral Cl-HCO3 exchange is present in basolateral membranes and that, in the absence of HCO3, Cl-HCO3 exchange can function as a Cl-OH exchange and regulate pHi across basolateral membranes of rat distal colon. crypt glands; superfusion; intracellular pH; membrane vesicles; 36Cl uptake; Cl-anion exchange  相似文献   

3.
The role of carbonic anhydrase (CA) in ion transport processesof aquatic and terrestrial arthropod species is reviewed. Inboth insects and crustaceans CA is found in a variety of iontransporting tissues. The bulk of CA activity in crustaceansis concentrated in the posterior gills, which are morphologicallyand biochemically adapted for ion transport. The enzyme canbe specifically localized to gill lamellae which contain largepopulations of salt transporting chloride cells. Enzyme activityin the posterior gills of species having the ability to regulateblood ion concentrations increases when these organisms areacclimated to environmental salinities in which they ion regulate.In stenohaline, ion conforming species branchial CA activityis uniformly low, being only 5–10% that in regulatingspecies. Studies on the blue crab, Callinectes sapidus, usingthe specific CA inhibitor acetazolamide have shown that theenzyme is indeed important in blood ion regulation. Blood Na$and Cl concentrations are both severely lowered in drug-treatedanimals acclimated to low salinity, while they remain virtuallyunaffected in animals acclimated to high salinity, in whichthe animal is an ion conformer. High salinity acclimated crabstreated with acetazolamide do not survive transfer to low salinity,and mortality is related to a breakdown in the ion regulatorymechanism. Branchial CA most likely functions in the hydrationof respiratory CO2 to H$ and HCO3, which serve as counterionsfor the active uptake of Na$ and Cl, respectively. Interrestrial species the role of CA is unclear and merits furtherinvestigation.  相似文献   

4.
SYNOPSIS. Evidence in support of the hypothesis that T3-inducedenhancement of O2 consumption in mammalian target tissues isattributable to a stimulation of energy utilization for activetransmembrane Na$ and K$ transport is reviewed. The stimulationof target-tissue Na, K transport-dependent respiration followingT3 treatment is associated with enhanced rates of active Na$efflux and K$ influx as well as with an increase in Na, KATPaseenzymaticactivity. The enhancement of Na, K-ATPase activity and enzymeabundance is secondary to a T3-induced stimulation of Na, K-ATPasea and rß subunit biosynthesis and is probably mediatedby increased abundance of specific messenger RNAs coding forthe subunits of the enzyme. It is proposed that a coordinateaugmentation of Na, KATPase enzymatic activity and enhancementof passive membrane permeability to Na$ and K$ are necessaryto maintain the increased rates of active Na, K transport andenergy consumption associated with thyroid thermogenesis.  相似文献   

5.
Reactivation of photosynthetic oxygen-evolution was investigatedwith chloroplasts inhibited by 0.8 M Tris-, 0.8 M Tris-20% acetone-,0.8 M KCl-, 0.5 M NaClO4- or 1 mM NH2OH-washing, and with heat-treatedor aged chloroplasts. These chloroplasts restored oxygen evolvingactivity by two successive treatments; incubation of chloroplastswith reduced DPIP, then with Mn2$, Ca2$, dithiothreitol andbovine serum albumin under weak illumination (light-reactivation). Some factors required for light-reactivation could be omitteddepending on the inhibition treatment. For example, Mn2$, Ca2$and dithiothreitol were not necessary for (1 mM NH2OH-STN (pH7.0)-washed)-DPIP-treated chloroplasts, and dithiothreitol for(Tris-acetone (pH 8.4)-washed)-DPIP-treated chloroplasts. Uncouplers, such as atebrin, CCCP, DCCD and NH4Cl, inhibitedthe lightreactivation. The Mn and Ca contents of the chloroplasts were determined withinhibited and DPIP-treated chloroplasts. The Mn content of thechloroplasts tended to decrease with increasing pH of the washingmedium for inhibition. The Ca content decreased when chloroplastswere washed with 0.8 M KCl. (Received November 22, 1974; )  相似文献   

6.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

7.
Resting or basal intracellular pH (pHi) measured in cultured human syncytiotrophoblast cells was 7.26 ± 0.04 (without HCO3) or 7.24 ± 0.03 (with HCO3). Ion substitution and inhibitor experiments were performed to determine whether common H+-transporting species were operating to maintain basal pHi. Removal of extracellular Na+ or Cl or addition of amiloride or dihydro-4,4'-diisothiocyanatostilbene-2,2'-disulfonate (H2DIDS) had no effect. Acidification with the K+/H+ exchanger nigericin reduced pHi to 6.25 ± 0.15 (without HCO3) or 6.53 ± 0.10 (with HCO3). In the presence of extracellular Na+, recovery to basal pHi was prompt and occurred at similar rates in the absence and presence of HCO3. Ion substitution and inhibition experiments were also used to identify the species mediating the return to basal pHi after acidification. Recovery was inhibited by removal of Na+ or addition of amiloride, whereas removal of Cl and addition of H2DIDS were ineffective. Addition of the Na+/H+ exchanger monensin to cells that had returned to basal pHi elicited a further increase in pHi to 7.48 ± 0.07. Analysis of recovery data showed that there was a progressive decrease in pH per minute as pHi approached the basal level, despite the continued presence of a driving force for H+ extrusion. These data show that in cultured syncytial cells, in the absence of perturbation, basal pHi is preserved despite the absence of active, mediated pH maintenance. They also demonstrate that an Na+/H+ antiporter acts to defend the cells against acidification and that it is the sole transporter necessary for recovery from an intracellular acid load. sodium/hydrogen antiporter; pH regulation; fluorescence; 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein  相似文献   

8.
There are few intraspecific studies relating physiological parameters to body mass. This study relates scaling of ionic regulation and respiratory parameters with body mass in crayfish (Procambarus clarkii). These animals were chosen because of their direct development, spanning four orders of magnitude in body mass. Usually, these animals are hyperregulators and must maintain hemolymph electrolyte levels above those in the ambient freshwater. This is especially important in the postmolt, when ion imbalance can occur. Maintaining hemolymph ion levels above ambient involves active processes that are independently related to metabolic rate, ventilation, and circulation. Therefore, this study investigates relationships among size and ionic regulation, heart rate, and ventilation in crayfish, spanning a size range of 0.003-24 g. Postmolt net ion uptake of Ca, titratable base, Na, Cl, and NH4 increase with body mass (positive allometry) with slopes of 0.92, 0.79, 0.90, 0.84, and 0.87, respectively. Between 72% and 97% of variation in ionic regulation was related to body mass. The slopes differed from each other for Ca and titratable base but not for Na, Cl, and NH4. For heart rate and ventilation rate, different relationships were derived for animals smaller and larger than 0.01 g (between first and third instar). Animals larger than 0.01 g show a negative allometric relationship between heart rate and body size ([body mass](0.15)), while smaller animals show positive allometry with body size, but only 29% of variation in heart rate is explained by body size alone. For ventilation rates, the negative allometry with body size for animals larger than 0.01 g is present, but less than 15% of variation in ventilation rate is explained by size, while for smaller animals the size dependency disappears. Based on these results, predictions of physiological parameters such as ionic regulation based on body size are useful in crayfish, but estimates of respiratory parameters and body size should be used with caution.  相似文献   

9.
The secondary active Cl(-) secretion in seawater (SW) teleost fish gills and elasmobranch rectal gland involves basolateral Na(+),K(+)-ATPase and NKCC, apical membrane CFTR anion channels, and a paracellular Na(+)-selective conductance. In freshwater (FW) teleost gill, the mechanism of NaCl uptake is more controversial and involves apical V-type H(+)-ATPase linked to an apical Na(+) channel, apical Cl(-)-HCO-3 exchange and basolateral Na(+),K(+)-ATPase. Ca(2+) uptake (in FW and SW) is via Ca(2+) channels in the apical membrane and Ca(2+)-ATPase in the basolateral membrane. Mainly this transport occurs in mitochondria rich (MR) chloride cells, but there is a role for the pavement cells also. Future research will likely expand in two major directions, molded by methodology: first in physiological genomics of all the transporters, including their expression, trafficking, operation, and regulation at the molecular level, and second in biotelemetry to examine multivariable components in behavioral physiological ecology, thus widening the integration of physiology from the molecular to the environmental levels while deepening understanding at all levels.  相似文献   

10.
Calcium homeostasis in crustaceans is influenced by their natural molting cycle that periodically requires replacement of the calcified exoskeleton in order for growth to occur. Whole body Ca balance transitions from intermolt (zero net flux) to premolt (net efflux) and postmolt (net influx at the rate of 2 mmol kg(-1)h(-1)). As such, molting provides a convenient model to study up- and down-regulation of epithelial Ca transporting proteins (such as Ca pumps and exchangers), the genes that encode them, and the steroid hormone (ecdysone) that putatively regulates the genes. Species residing in either freshwater or in terrestrial environments are more limited in their Ca availability than are marine species. Further the advance towards terrestriality is accompanied by decreased reliance upon branchial Ca uptake and increased reliance upon digestive uptake. This review will correlate Ca handling strategies with environment in semi-terrestrial and terrestrial crabs through examining environmental sources of Ca uptake. Ca homeostasis will also be discussed at the whole animal level, cellular, subcellular and molecular levels of regulation.  相似文献   

11.
Glutamate dehydrogenase (GDH) (EC 1.4.1.3 [EC] .) purified from greentobacco callus mitochondria was activated markedly by Ca2$ inthe amination reaction. This activation was detectable evenat concentrations below 5 µM Ca2$. Saturation curves for the three substrates of the aminationreaction showed normal Michaelis-Menten kinetics in the presenceof 1 mM of Ca2$, but pronounced substrate inhibition occurredwithout Ca2$. The effect of Ca2$ was chiefly on the maximalvelocity. The saturation curve for NH4Cl in the presence of Ca2$ was modulatedby a change in pH. The apparent Km value for NH4Cl markedlydecreased whereas that for -ketoglutarate increased slightlywhen the pH was raised from 7.3 to 9.0. In contrast, the Kmfor NADH was little affected by raising the pH. The characteristicof GDH which increases its affinity for NH4Cl when the pH israised may be compatible with the detoxification of ammonia. 1 Present address: Mochida Pharmaceutical Co., Ltd. (Received August 24, 1981; Accepted November 28, 1981)  相似文献   

12.
In apple fruit, active ATP-dependent microsomal Ca2$ uptakeand respiration-dependent mitochondrial Ca2$ uptake were observed. The mitochondrial Ca2$ uptake was depressed by the calmodulinantagonists chlorpromazine hydrochloride (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamidehydrochloride (W-7). The Ca2$-ATPase from apple mitochondriawas also inhibited by CPZ or W-7. The apparent Km value forCa2$ in mitochondrial Ca2$ uptake (Km=0.35 mM) was similar tothat of mitochondrial Ca2$-ATPase (Km=0.32 mM). The inhibitoryeffect of W-7 on the activity of the mitochondrial Ca2$ uptakewas closely correlated with the inhibition by W-7 of mitochondrialCa2$-ATPase (r=0.996). These findings indicate that the mitochondrialuptake of Ca2$ in apple fruit depends on the calmodulin-mediatedactivation of Ca2$-ATPase. The microsomal Ca2$ uptake was depressed by CPZ, suggestingthat the microsomal Ca2$ uptake may also be modulated by calmodulin. 1 Contribution No. C-72, Fruit Tree Research Station. (Received June 7, 1982; Accepted October 19, 1982)  相似文献   

13.
Hydrodictyon africanum can photosynthesize at high pH underconditions in which HCO3 rather than CO2 is the carbonspecies entering the cell. A passive entry of HCO3 seemsunlikely; a metabolic HCO3 pump is proposed. It is possiblethat such a pump is related to a light-dependent reaction specificto the use of HCO3. This reaction is dependent on photosystem2, but appears to be independent of ATP. These characteristicsare similar to those of active lightdependent Cl influx in H.africanum, and suggest a similar energy source for the two pumps.The HCO3 pump may be electrogenic.  相似文献   

14.
Muchevidence supports the view that hypoxic/ischemic injury is largely dueto increased intracellular Ca concentration([Ca]i) resulting from 1) decreasedintracellular pH (pHi), 2) stimulated Na/H exchangethat increases Na uptake and thus intracellular Na (Nai),and 3) decreased Na gradient that decreases or reverses net Catransport via Na/Ca exchange. The Na/H exchanger (NHE) is alsostimulated by hypertonic solutions; however, hypertonic media mayinhibit NHE's response to changes in pHi (Cala PM and Maldonado HM. J Gen Physiol 103: 1035-1054, 1994). Thus wetested the hypothesis that hypertonic perfusion attenuates acid-induced increases in Nai in myocardium and, thereby, decreasesCai accumulation during hypoxia. Rabbit hearts wereLangendorff perfused with HEPES-buffered Krebs-Henseleit solutionequilibrated with 100% O2 or 100% N2. Hypertonic perfusion began 5 min before hypoxia or normoxicacidification (NH4Cl washout). Nai,[Ca]i, pHi, and high-energyphosphates were measured by NMR. Control solutions were 295 mosM, andhypertonic solutions were adjusted to 305, 325, or 345 mosM by additionof NaCl or sucrose. During 60 min of hypoxia (295 mosM),Nai rose from 22 ± 1 to 100 ± 10 meq/kg dry wt while[Ca]i rose from 347 ± 11 to 1,306 ± 89 nM.During hypertonic hypoxic perfusion (325 mosM), increases inNai and [Ca]i were reduced by 65 and 60%, respectively (P < 0.05). Hypertonicperfusion also diminished Na uptake after normoxic acidification by87% (P < 0.05). The data are consistent with the hypothesisthat mild hypertonic perfusion diminishes acid-induced Na accumulationand, thereby, decreases Na/Ca exchange-mediated Caiaccumulation during hypoxia.

  相似文献   

15.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

16.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO3 absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na+/H+ exchangers (NHE). In the MTAL, apical NHE3 mediates H+ secretion necessary for HCO3 absorption; basolateral NHE1 influences HCO3 absorption by regulating apical NHE3 activity. In microperfused rat MTALs, the addition of 1 nM aldosterone rapidly decreased HCO3 absorption by 30%. This inhibition was unaffected by three maneuvers that inhibit basolateral Na+/H+ exchange and was preserved in MTALs from NHE1 knockout mice, ruling out the involvement of NHE1. In contrast, exposure to aldosterone for 15 min caused a 30% decrease in apical Na+/H+ exchange activity over the intracellular pH range from 6.5 to 7.7, due to a decrease in Vmax. Inhibition of HCO3 absorption by aldosterone was not affected by 0.1 mM lumen Zn2+ or 1 mM lumen DIDS, arguing against the involvement of an apical H+ conductance or apical K+-HCO3 cotransport. These results demonstrate that aldosterone inhibits HCO3 absorption in the MTAL through inhibition of apical NHE3, and identify NHE3 as a target for nongenomic regulation by aldosterone. Aldosterone may influence a broad range of epithelial transport functions important for extracellular fluid volume and acid-base homeostasis through direct regulation of this exchanger. thick ascending limb; acid-base transport; epithelial Na+ transport; kidney  相似文献   

17.
Several studies suggest the involvement of Na+ and HCO3 transport in the formation of cerebrospinal fluid. Two Na+-dependent HCO3 transporters were recently localized to the epithelial cells of the rat choroid plexus (NBCn1 and NCBE), and the mRNA for a third protein was also detected (NBCe2) (Praetorius J, Nejsum LN, and Nielsen S. Am J Physiol Cell Physiol 286: C601–C610, 2004). Our goal was to immunolocalize the NBCe2 to the choroid plexus by immunohistochemistry and immunogold electronmicroscopy and to functionally characterize the bicarbonate transport in the isolated rat choroid plexus by measurements of intracellular pH (pHi) using a dual-excitation wavelength pH-sensitive dye (BCECF). Both antisera derived from COOH-terminal and NH2-terminal NBCe2 peptides localized NBCe2 to the brush-border membrane domain of choroid plexus epithelial cells. Steady-state pHi in choroidal cells increased from 7.03 ± 0.02 to 7.38 ± 0.02 (n = 41) after addition of CO2/HCO3 into the bath solution. This increase was Na+ dependent and inhibited by the Cl and HCO3 transport inhibitor DIDS (200 µM). This suggests the presence of Na+-dependent, partially DIDS-sensitive HCO3 uptake. The pHi recovery after acid loading revealed an initial Na+ and HCO3-dependent net base flux of 0.828 ± 0.116 mM/s (n = 8). The initial flux in the presence of CO2/HCO3 was unaffected by DIDS. Our data support the existence of both DIDS-sensitive and -insensitive Na+- and HCO3-dependent base loader uptake into the rat choroid plexus epithelial cells. This is consistent with the localization of the three base transporters NBCn1, Na+-driven Cl bicarbonate exchanger, and NBCe2 in this tissue. bicarbonate metabolism; BCECF; cerebrospinal fluid; acid/base transport; ammonium prepulse  相似文献   

18.
Extracellular and intracellular acid-base balance is necessaryfor the maintenance of normal metabolic processes. The primarysource of acid is metabolically produced CO2, and the CO2/HCO3system is the most significant buffer. The regulation of acid-basebalance is complex, involving the interaction between respiratorygas exchange and ion transport. In aquatic crustaceans respirationis governed by the need to extract oxygen from water, an O2-poormedium; thus, acid-base balance is maintained primarily throughion transport mechanisms. These mechanisms include Na+/H+ andCl/HCO3 exchange processes that are sensitiveto the extracellular acid-base status of the animal. In marinecrabs, ion regulation and acid-base balance are accomplishedby the posterior gills, while in freshwater species all gillsand the antennal gland perform these functions. Intracellularacid-base balance appears to be maintained primarily by iontransport across the cell membrane. Hemolymph pH varies inverselywith acclimation temperature and salinity. In both cases Pco2remains nearly constant, and the pH change is a result of changesin hemolymph HCO3 concentrations brought about by ionexchange mechanisms. Environmental hypercapnia or hyperoxiainduces a repiratory acidosis characterized by increased Pco2,low pH, and elevated HCO3; this is partially compensatedfor by ion exchange processes that bring about a further increasein hemolymph HCO3. Exercise causes a mixed respiratoryand metabolic acidosis with compensation via H+ ion excretionand hyperventilation.  相似文献   

19.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

20.
Populations of Sphaerium corneum (L.) and Pisidium spp. weresampled monthly for 13 months, at 11 sites with a wide rangeof water chemistry in N.W. England. Both genera showed almostyear-round reproduction, but the periods of maximum productionshowed between-population variation. S. corneum adults containedspat at different stages of development and spat size was relatedto number in the brood. Multiple regression analysis with 16water physicochemical variables showed the following to be highlysignificant factors (P<0.01) in the distribution of the molluses(factors in order of importance):- S. corneum: HCO3, K$, Cl, Mg2$, temperature, Ca2$, month; Pisidium spp: PO43–, Mg2$, mud, oxygen, temperature, month. (Received 25 January 1978;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号