首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
海藻糖微生物酶法合成机制的研究   总被引:5,自引:0,他引:5  
来源于嗜酸热古菌芝田硫化叶菌(Sulfolobus shibatae)B12的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶(MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶,分别以麦芽寡糖和淀粉为转化底物,在pH5.5,60℃条件下合成海藻糖。从反应产物分析结果可知,两个酶合成海藻糖时能利用的最小底物是麦芽四糖,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α-1,4-葡萄糖苷酶活性,能在麦芽寡糖还原末端水解α-1,4糖苷键,生成葡萄糖分子,其反应最小底物分别是麦芽三糖和四糖。推测海藻糖合成酶可能有两个不同的催化活性中心。  相似文献   

2.
海藻糖微生物酶法合成机制的研究*   总被引:1,自引:0,他引:1  
来源于嗜酸热古菌芝田硫化叶菌 (Sulfolobusshibatae)B1 2的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶 (MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶 ,分别以麦芽寡糖和淀粉为转化底物 ,在pH5 5 ,6 0℃条件下合成海藻糖。从反应产物分析结果可知 ,两个酶合成海藻糖时能利用的最小底物是麦芽四糖 ,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α 1 ,4 葡萄糖苷酶活性 ,能在麦芽寡糖还原末端水解α 1 ,4糖苷键  相似文献   

3.
海藻糖合酶能够利用麦芽糖一步法转化生产海藻糖,其底物专一性较高,该酶体系生产工艺简单,不受底物麦芽糖浓度的影响,是工业生产海藻糖的首选。为获得具有生产海藻糖合酶能力的毕赤酵母表面展示载体,实验以筛选的Pseudomonas putide P06海藻糖合酶基因为模板,PCR扩增得到海藻糖合酶基因(tres,2064 bp),连接至pPICZαA质粒中,获得重组质粒pPICZαA-tres。以来自酿酒酵母的共价连接细胞壁的Pir系列蛋白的Pir1p成熟肽蛋白作为毕赤酵母表面展示的锚定蛋白,利用PCR技术扩增得到pir1p(847 bp),连接至重组质粒pPICZαA-tres中,获得重组质粒pPICZαA-tres-pir1p。将重组质粒电击转入毕赤酵母GS115中,利用α-factor信号肽将蛋白引导分泌至细胞壁展示于毕赤酵母表面。通过Zeocin抗性筛选,挑选出阳性克隆子并摇瓶发酵。发酵产物经离心、破碎并使用昆布多糖酶水解,洗脱,结果显示,SDS-聚丙烯酰胺凝胶电泳分析可见明显融合蛋白条带,表明海藻糖合酶已成功地锚定在毕赤酵母。将重组毕赤酵母使用pH 7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在30℃~60℃水浴条件下作用2 h,反应产物利用HPLC检测,能够检测到酶学活性。在优化后的条件pH 7.5,50℃,表面展示海藻糖合酶酶活达到300.65 U/g。40℃~50℃酶活较稳定,保温60 min,残留酶活相对活力达75%以上;最适反应pH值为7.5,并在碱性环境下稳定。  相似文献   

4.
海藻糖是自然界中普遍存在的一种非还原性双糖,是一种极好的天然干燥剂和保鲜剂。海藻糖合酶能够催化α,α-1,4-糖苷键连接的麦芽糖直接转化为α,α-1,1-糖苷键连接的海藻糖,是生产海藻糖的首选。为获得具有良好展示效果的海藻糖合酶,将其高效稳定的展示于枯草芽孢杆菌芽孢表面,实验同时分别选取增强型绿色荧光蛋白(EGFP)和海藻糖合酶(Tres)作为模型蛋白,以来自枯草芽孢杆菌的芽孢衣壳蛋白Cot C作为枯草芽杆菌表面展示的锚定蛋白进行表面展示研究。利用流式细胞仪分析EGFP在芽孢表面展示的情况,结果表明芽孢衣壳蛋白Cot C可以将EGFP固定在芽孢的表面。然后将荧光蛋白基因egfp通过酶切替换为海藻糖合酶基因tres,将重组菌株使用p H7.5的缓冲液清洗并重悬,与底物浓度为30%的麦芽糖在50℃水浴条件下作用2h,反应产物利用HPLC检测,能够检测到海藻糖峰,通过计算得到的酶活为252U/ml。说明海藻糖合酶基因通过与芽孢衣壳蛋白Cot C融合后可被展示在芽孢的表面。  相似文献   

5.
海藻糖合酶的分子生物学研究进展   总被引:3,自引:0,他引:3  
海藻糖合酶能够将麦芽糖转化为海藻糖,在海藻糖的工业生产中具有十分重要的意义。本文从海藻糖合酶的基因克隆、基因工程应用、结构和催化机制的研究以及其在微生物体内的功能等方面讨论了海藻糖合酶的研究进展。  相似文献   

6.
目的:为筛选出一株产海藻糖合酶的菌株,并以此菌的全DNA为模板,克隆出产海藻糖合酶的目的基因片段。方法:实验过程中采用了常规筛选菌种、快速提取细菌全基因、显微镜观察菌种、热启动PCR技术、电泳纯化回收基因片段、EcoRⅠ和HindⅢ双酶切鉴定目的基因片段等方法。结果:在电镜下可观察到有芽孢、杆菌;菌株16S rRNA基因扩增产物共计1490个碱基;PCR方法扩增出阳性克隆大约1700bp的基因片段。结论:通过生理、形态、结构特征分析及16S rRNA基因全序列比较得出结论:筛选到一株短小芽孢杆菌;PCR扩增出阳性克隆片段,全长1722bp,为实验所要的编码海藻糖合酶的基因片段。  相似文献   

7.
【目的】克隆表达嗜热古菌Sulfolobus tokodaii strain 7中的ST0929基因,并测定其酶活性。【方法】根据ST0929基因设计引物进行PCR扩增,将这段基因克隆到p ET-15b质粒上,重组质粒导入大肠杆菌BL21细胞中表达。亲和层析纯化酶蛋白,并测定其酶活性。【结果】SDS-PAGE分析表明其分子量大约为83 k D。酶学性质研究表明该酶的最适温度为75°C,最适p H为5.0,具有很强的热稳定性和p H稳定性。该酶还能对多种金属离子和有机溶剂具有一定的耐受性。底物特异性研究发现该酶能够利用麦芽糊精作底物,而不能利用壳寡糖、麦芽糖等。【结论】通过以上酶学性质的研究,说明这种来源于超嗜热古菌的麦芽寡糖基海藻糖合酶在工业生产海藻糖领域具有一定的应用前景。  相似文献   

8.
海藻糖在植物遗传转化中的应用   总被引:1,自引:0,他引:1  
文章介绍海藻糖的性质、生理生化功能和海藻糖合酶基因在植物遗传转化中的应用。  相似文献   

9.
海藻糖广泛存在于细菌、真菌、昆虫、无脊椎动物和植物等大量生物中。它不仅可以作为昆虫的能量来源,而且在抗逆等方面起着重要作用。海藻糖合成酶(Trehalose-6-phosphate synthase,TPS)是海藻糖合成过程中的一个关键酶。目前细菌、真菌和植物中都已经被发现和克隆,但其不存在于哺乳动物中。海藻糖是昆虫的"血糖",主要通过海藻糖合成酶和海藻糖-6-磷酸脂酶(Trehalose-6-phosphate phosphatase,TPP)在脂肪体中催化合成。TPS基因所编码的蛋白序列一般都包含两个保守的结构域:TPS和TPP,分别对应着酵母中的Ots A和Ots B基因。昆虫海藻糖合成酶的基因表达和酶活性的变化与昆虫的多项生理过程有着密切的关系,海藻糖合成酶有可能成为控制害虫的新靶标。  相似文献   

10.
以大米淀粉为原料,多酶复配制备海藻糖。确定了实验室条件下多酶复配生产海藻糖的最佳条件:以15%(m/V)大米淀粉为底物,催化温度45℃、pH 6. 0、DE值16、α/β-CGTase加量为1. 4U/ml、催化28h后糖化处理12h,海藻糖转化率由双酶法催化的50%提高至73%。在底物浓度为25%(m/V)时,海藻糖产量最高达到182. 5g/L,随后对高浓度海藻糖进行分离提取,分别考察了活性炭脱色、离交分离、浓缩结晶等对海藻糖提取效率的响。  相似文献   

11.
Abstract A temperature-sensitive mutant of Saccharomyces cerevisiae has been isolated which accumulates a large pool of trehalose-6-phosphate when shifted to temperatures above 34°C nonpermissive for growth. This indicates that its defect is in the second enzyme of trehalose biosynthesis, the hydrolase that converts trehalose-6-phosphate to trehalose. Trehalose is made continouosly when yeast is growing on high glucose or when it is starved for a nitrogen source, and accumulates as cells enter the stationary phase. Revertants of the mutant able to grow at 37°C arise spontaneously and no longer accumulate trehalose-6-phosphate at this temperature. Also the kinetics of trehalose-6-phosphate accumulation in the mutant following a 25–37°C shift resemble the kinetics of inhibition of RNA and protein synthesis. It is probable therefore that accumulation of high levels of this metabolic intermediate is inhibitory to growth.  相似文献   

12.
海藻糖的生产制备及其应用前景   总被引:11,自引:0,他引:11  
海藻糖是一种广泛分布于细菌、真菌和动植物体内的双糖。在生物体内 ,它不仅作为结构成分和能量物质存在 ,而且在热击和脱水等协迫条件下 ,对生物体和生物大分子起着良好的非特异性保护作用。由于其独特的生物学功能 ,它在食品、分子生物学、医药、化妆品、农业等方面具有广阔的应用前景。简述海藻糖的生产制备、应用研究及其前景展望。  相似文献   

13.
Trehalose is a non-reducing disaccharide of glucose that occurs in a large number of organisms, playing an important role in desiccation and heat stress protection. Trehalose accumulation has proven to be an effective way of increasing drought tolerance in both model plants such as tobacco and important crops such as potato or rice. In this work we aim to genetically engineer maize with the Arabidopsis thaliana trehalose phosphate synthase gene (AtTPS1), involved in trehalose biosynthesis via electroporation. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene Bar as a selective agent was inserted in the plasmid vector pGreen0229 and used to transform maize inbred line Pa91 via electroporation. Fifteen putative transgenic plants (T0 generation) were obtained. Transgene integration in T0 plants was analyzed by Southern-blot analysis. T0 plants had normal phenotypes, although smaller than wild type plants. Contrary to wild type plants, when sexual organs emerged, tassels appeared at least 15 days earlier than ears in the same plant, rendering impossible the self-pollination of the T0 plant. These plants were then crossed with wild type plants and in some cases T1 seeds were obtained. T1 seeds presented deformities, especially the lack of endosperm, but it was still possible to germinate some of these seeds. The so obtained plants were tested by Northern blot but no AtTPS1 gene expression was detected, a fact possibly due to the incomplete insertion of the AtTPS1 gene or an extremely low gene expression level.  相似文献   

14.
大肠杆菌\%otsA\%基因的克隆和表达   总被引:2,自引:0,他引:2  
用PCR方法扩增了1.5kb的otsA基因片段,将该片段连接到多拷贝克隆载体后转化otsBA缺失和otsA缺陷的大肠杆菌菌株,使转化株重新获得otsA基因功能。生长曲线表明转化株在高渗培养基中生长良好,薄层层析法(TLC)检测海藻糖实验说明转化株细胞诱导后合成海藻糖,otsA基因的克隆和表达为赋予转基因植物抗高渗、耐干旱能力提供了实验依据和材料。  相似文献   

15.
Abstract A range of microorganisms was screened for new and high producer strains of trehalose phosphorylase (EC 2.4.1.64). Trehalose phosphorylase activity was found in cells of actinomycetes of the genera Actinomadura, Amycolata, Catellatospora, Kineosporia , and Nocardia . Among them, Catellatospora ferruginea showed the highest enzyme activity. Trehalose phosphorylase from C. ferruginea was able to catalyse both the phosphorolysis of trehalose into β-glucose 1-phosphate and d-glucose and the synthesis of trehalose from β-glucose 1-phosphate and d-glucose.  相似文献   

16.
Cytotechnology - Trehalose is a nontoxic disaccharide and a promising cryoprotection agent for medically applicable cells. In this study, the efficiency of combining trehalose with reversible...  相似文献   

17.
海藻糖酶法合成途径及其酶基因的重组表达研究   总被引:1,自引:0,他引:1  
在生物抗逆研究中,海藻糖合酶基因是继甘露醇、脯氨酸、甜菜碱合成酶基因之后又一个与抗逆相关的基因。海藻糖具有独特的生物学功能,能提高生物体对干旱、高温、冷冻和渗透压的抗性,发现以来就受到人们的普遍关注。随着对海藻糖化学性质、生理功能、作用机理及代谢途径等方面研究的深入,其在生物制品、食品、医药、作物育种及精细化工等领域广阔的应用前景日益显现。就海藻糖在生物体中的合成途径,以及海藻糖合成酶的基因工程研究进展进行了综述。  相似文献   

18.
Fresh cells of Saccharomyces cerevisiae were disrupted after 60 s microwave irradiation, and trehalase activity was simultaneously destroyed. Trehalose could be extracted from microwave-treated yeast by water in 10 min at room temperature. © Rapid Science Ltd. 1998  相似文献   

19.
The stability of a recombinant cutinase from the fungus Fusarium solani was evaluated in aqueous media and in reverse micelles. Thermal unfolding in aqueous solution is a two-state process at the pH values tested and trehalose increased the temperature at the mid-point of the unfolding transitions. Irreversible inactivation is a first-order process at pH 9.2, but two inactivation phases were resolved at pH 4.5. Trehalose did not change the irreversible inactivation pathway but increased the kinetics of the irreversible inactivation step. Unfolding of cutinase induced by guanidine hydrochloride was more complex, showing a stable intermediate, molten globule in character, within the transition region. Trehalose did not change the three-state nature of the unfolding process. Encapsulation of cutinase in AOT reverse micelles induced unfolding at room temperature due to an enzyme location at the micellar interface. The presence of 1-hexanol as co-surfactant delayed or even prevented the unfolding of cutinase by promoting the establishment of a new equilibrium in the system. Cutinase is encapsulated in a 10-fold larger AOT/hexanol reverse micelle built up by the fusion of empty reverse micelles. When tested in a membrane reactor in the presence of 1-hexanol, an operational half-life of 674 days was achieved.  相似文献   

20.
Trehalose is widely used as a freeze-drying protectant in biomaterial preservation. For this purpose, trehalose has to be loaded into the cells but this is difficult and many methods have been tried. The application of ultrasound can temporarily permeabilize cell membranes, which offers a non-chemical, non-viral, and non-invasive method of cellular drug delivery. Ultrasound is employed here to enhance the loading of trehalose into human platelets. Two frequencies were used, 25 kHz and 800 kHz. The estimated intensity of ultrasound in the sample was varied from 0 to 1.5 W/cm2. The trehalose concentration in the platelets was 11.27 ± 2.53 mmol/L when Wolkers et al.’s method was used without ultrasound. The application of 0.8 W/cm2, 800 kHz ultrasound for 1 h increased the concentration of trehalose loaded by 54%. The application of 0.8 W/cm2, 25 kHz ultrasound for 30 min increased the trehalose concentration that was loaded by 172%. The number and mean volume of the platelets following ultrasonic radiation in these two cases remained normal as compared with fresh untreated platelets. Morphological examination of the radiated platelets showed slight changes. Although further work is needed, ultrasound has been shown to be efficient for the loading of trehalose into platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号