首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the butterfly genus Euphilotes and their host plant genus Eriogonum in western North America is suggested to be one of sequential evolution rather than coevolution. Eriogonum, a genus of nearly 250 species, probably had a Miocene origin, but has had its modern distribution significantly influenced by recent Pleistocene glaciation. The evolution of Euphilotes, as a distinct genus of four sibling species, apparently postdates the establishment and recent proliferation of Eriogonum. Successful speciation in Euphilotes has been accomplished mainly through modifications in genitalia of those butterflies using a single species of Eriogonum. The subsequent proliferation of Euphilotes subspecies has been the result of host switching coupled with geographic isolation onto individual species of Eriogonum acting as restricted biogeographic islands. In the first instance, direct evolutionary competition for a limited resource (one species of Eriogonum) leads to partitioning of that resource by the butterflies whose entire life cycle is associated with that plant species. In the second instance, host switching and isolation have permitted establishment of minor subspecies without significant interaction with other subspecies of the same species. In instances where interspecific subspecies competition exists, resource partitioning, coupled with more pronounced genetic isolation, seem to have occurred resulting in more readily distinct subspecies. We speculate that the success of subspeciation in Euphilotes is dependent upon the numeric size and geographic extent of the host species. Euphilotes subspecies on plants of restricted distributions are themselves seemingly limited in their evolutionary potential as the most dynamic evolution of Euphilotes subspecies is that associated with widespread and variable Eriogonum species. In all instances, the tempo and mode of evolution in Euphilotes appears to be sequential as it follows and is seemingly dependent upon what has already occurred in Eriogonum.  相似文献   

2.
Different species in a given site or population of a given species in different sites may fluctuate in synchrony if they are affected similarly by factors such as spatially autocorrelated climate, predation, or by dispersal between populations of one species. We used county wise time series of hunting bag records of four Norwegian tetraonid species covering 24 years to examine patterns of interspecific and intraspecific synchrony. We estimated synchrony at three spatial scales; national, regional (consisting of counties with similar climate), and county level. Ecologically related species with overlapping distributions exhibited strong synchrony across Norway, but there was much variation between the different regions and counties. Regions with a long coastline to both the North Sea and the Norwegian Ocean exhibited an overall stronger synchrony than those consisting of more continental areas. Intraspecific synchrony was generally low across all counties, but stronger synchrony between counties within regions defined by climatic conditions. Synchrony was negatively related to distance between populations in three of four species. Only the synchrony in willow ptarmigan showed a clear negative relationship with distance, while the other species had both strong positive and negative correlations at short distances. Strong interspecific synchrony between some species pairs within regions and weak intraspecific synchrony across counties within regions suggest a stronger synchronizing effect from environmental factors such as weather or predation and less effect from dispersal. Our results suggest that the complete tetraonid community is structured by environmental factors affecting the different species similarly and causes widespread interspecific synchrony. Local factors affecting the population dynamics nevertheless frequently forces neighbouring populations out of phase.  相似文献   

3.
Within-population spatial synchrony in mast seeding of North American oaks   总被引:8,自引:0,他引:8  
Mast seeding, the synchronous production of large crops of seeds, has been frequently documented in oak species. In this study we used several North American oak data-sets to quantify within-stand (<10 km) synchrony in mast dynamics. Results indicated that intraspecific synchrony in seed production always exceeded interspecific synchrony and was essentially constant over distances ranging from 100 m to 10 km. Asynchrony between species was at least partially attributable to differences in the endogenous dynamics in seed production caused by the varying numbers of years (1 or 2) required to mature seeds. Similarly, the magnitude of intraspecific seed production synchrony was related to intraspecific variation in endogenous dynamics; this intraspecific variation could be caused by spatial variation in habitat conditions. These results indicate that both interspecific and intraspecific variation in the endogenous processes generating variability in seed production may influence the magnitude of spatial synchrony in total (all species) mast production. Such findings may be of significance to understanding interactions between synchrony in mast seeding and animal consumer populations.  相似文献   

4.
啮齿动物分子系统地理学研究进展   总被引:2,自引:1,他引:1  
系统地理学是研究种间及种内不同种群的形成、现有分布格局的历史原因和演化过程的一门学科。基于分子水平,能够更准确地界定物种分布格局,促进分子系统地理学的形成和发展。近年来,分子系统地理研究的开展,促进了对啮齿动物物种分布格局形成机制的理解。对啮齿动物的种内及种上分类阶元的系统演化关系、起源中心与演化历程、影响系统地理格局的因素、鼠害防控和保护生物学等分子系统地理学方面的研究进行了综述。并提出了啮齿动物分子系统地理学未来发展的四点展望:1)综合性系统地理学研究;2)区域系统地理学研究;3)物种演化的全面系统研究;4)新型分子标记和分析方法的发展。  相似文献   

5.
The summer tanager Piranga rubra is a Neotropical migrant that has experienced noted declines in the southwestern United States caused by extensive habitat loss of native riparian woodlands. This species is composed of two morphologically and behaviorally distinct taxa that traditionally have been recognized as subspecies, each occupying unique habitats in the southern part of North America. Genetic analyses of intraspecific variation are important in studies of threatened or endangered species because they can indicate whether smaller management units exist below the species level and they also provide estimates of within population variability. Using a mitochondrial DNA marker, the intraspecific genetic variation of this species is explored to determine whether the morphologically and behaviorally distinct subspecies are also genetically unique. By using traditional phylogenetic methods and building haplotype networks, results from this study indicate that the subspecies represent two phylogenetic species and should be managed as separate units. In addition, the level of gene flow among geographically isolated populations of the western subspecies is explored using Nested Clade Phylogeographic Analysis and population genetic tests. These analyses show that populations are genetically diverse and that haplotypes are shared across populations. Newly colonized populations are as diverse as older populations. This suggests that as habitat degrades in traditional breeding areas of the summer tanager, if suitable habitat elsewhere becomes available for new populations, these new colonies should be genetically diverse.  相似文献   

6.
Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence–absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC – species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias – species model: 1.31 and −0.58, subspecies model: 1.44 and −0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species'' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070–2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate change. A key future research challenge lies in assessing the extent to which species can utilize intraspecific variation under rapid environmental change.  相似文献   

7.
Due to slow rates of molecular evolution, DNA sequences used to identify and build phylogenies of algal species involved in harmful algal blooms (HABs) are generally invariant at the intraspecific level. This means that it is unknown whether HAB events result from the growth of a single clone, a few dominant clones, or multiple clones. This is true despite the fact that several physiological and demographic traits, as well as toxicity, are known to vary across clones. We generated AFLP fingerprints from a set of 6 clonal isolates, taken from a bloom of Prymnesium parvum at a striped bass mariculture facility. This new haptophyte bloom was recently implicated in fish kills at several sites in the United States. The AFLP fragments were highly reproducible and showed that all isolates were distinguishable due to abundant AFLPs unique to single isolates. These results demonstrate that blooms can be genetically diverse outbreaks and indicate that AFLP can be a powerful molecular tool for characterizing and monitoring this diversity.  相似文献   

8.
The tiger salamander,Ambystoma tigrinum, is a geographically widespread, morphologically variable, polytipic species. It is among the most variable species of salamanders in morphology and life history with two larval morphs (typical and cannibal) and three adult morphs (metamorphosed, typical branchiate, cannibal branchiate) that vary in frequency between subspecies and between populations within subspecies. We report morphometric evidence suggesting that branchiate cannibals arose through intraspecific change in the onset or timing of development resulting in the wider head and hypertrophied tooth-bearing skull bones characteristic of this phenotype. We also quantified bilateral symmetry of gill raker counts and abnormalities, then evaluated fluctuating asymmetry as a measure of the developmental stability of each morph. There was a significant interaction between fluctuating asymmetry of developmental abnormalities in cannibals and typicals and the locality where they were collected, suggesting that relative stability of each phenotype could vary among populations. While altered timing of developmental events appears to have a role in the evolution and maintenance of morphs, novel phenotypes persist only under favorable ecological conditions. Predictability of the aquatic habitat, genetic variation, kinship, body size, intraspecific competition and predation all affect expression and survival of the morphs inA. tigrinum. This taxon provides an excellent model for understanding the diversity and complexity of developmental and ecological variables controlling the evolution and maintenance of novel phenotypes.  相似文献   

9.
Evidence for sympatric speciation by host shift in the sea   总被引:1,自引:0,他引:1  
The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation, this mode of diversification remains controversial, at least in part because there are few well-supported examples. We use a combination of molecular, ecological, and biogeographical data to build a case for sympatric speciation by host shift in a new species of coral-dwelling fish (genus Gobiodon). We propose that competition for preferred coral habitats drives host shifts in Gobiodon and that the high diversity of corals provides the source of novel, unoccupied habitats. Disruptive selection in conjunction with strong host fidelity could promote rapid reproductive isolation and ultimately lead to species divergence. Our hypothesis is analogous to sympatric speciation by host shift in phytophagous insects except that we propose a primary role for intraspecific competition in the process of speciation. The fundamental similarity between these fishes and insects is a specialized and intimate relationship with their hosts that makes them ideal candidates for speciation by host shift.  相似文献   

10.
Most of the genetic variation in the H. octoseriatus group is present as fixed gene differences between species which have been described on morphological criteria. Based on allozymes, the taxonomic status of some species was challenged. There was insufficient evidence, however, to demonstrate that these were not 'good' biological species. Overall, the limited intraspecific variation was present as fixed gene differences among lice from different hosts and from different colonies of hosts; heterozygotes were rare. Two predictions derived from Price's model of parasite evolution were met: populations of lice were genetically homogeneous and, where genetic markers were present, we found substantial genetic variation among populations. These data contrast with those for endoparasitic helminths, where, in general, the amount of genetic variation is similar to that of free-living invertebrates.  相似文献   

11.
The bot fly (oestrid) is responsible for myiasis in domestic animals. The presence in some regions of southern Europe of an unusually large number of different species of bot fly suggests a high degree of oestrid biodiversity in this area. The many factors that can influence parasitic species composition (e.g. host and parasite genetics, relationships with their hosts and environment, and animal management) include the movement of domestic animals in association with migrating human populations in southern Europe over thousands of years. From its geographical position, which was strategically important in controlling commercial trade routes in early Western civilization, the Mediterranean sea has for more than 3000 years constituted the hub of many different cultures, populations, genes and agricultural practices. The movement of animals and their associated parasites in this region can help to explain the evolution of parasitic biodiversity.  相似文献   

12.
Contrary to expectation, populations of clonal organisms are often genetically highly diverse. In phytoplankton, this diversity is maintained throughout periods of high population growth (that is, blooms), even though competitive exclusion among genotypes should hypothetically lead to the dominance of a few superior genotypes. Genotype-specific parasitism may be one mechanism that helps maintain such high-genotypic diversity of clonal organisms. Here, we present a comparison of population genetic similarity by estimating the beta-dispersion among genotypes of early and peak bloom populations of the diatom Asterionella formosa for three spring-blooms under high or low parasite pressure. The Asterionella population showed greater beta-dispersion at peak bloom than early bloom in the 2 years with high parasite pressure, whereas the within group dispersion did not change under low parasite pressure. Our findings support that high prevalence parasitism can promote genetic diversification of natural populations of clonal hosts.  相似文献   

13.
Comparisons of intraspecific spatial synchrony across multiple epidemic insect species can be useful for generating hypotheses about major determinants of population patterns at larger scales. The present study compares patterns of spatial synchrony in outbreaks of six epidemic bark beetle species in North America and Europe. Spatial synchrony among populations of the Eurasian spruce bark beetle Ips typographus was significantly higher than for the other bark beetle species. The spatial synchrony observed in epidemic bark beetles was also compared with previously published patterns of synchrony in outbreaks of defoliating forest Lepidoptera, revealing a marked difference between these two major insect groups. The bark beetles exhibited a generally lower degree of spatial synchrony than the Lepidoptera, possibly because bark beetles are synchronized by different weather variables that are acting on a smaller scale than those affecting the Lepidoptera, or because inherent differences in their dynamics leads to more cyclic oscillations and more synchronous spatial dynamics in the Lepidoptera.  相似文献   

14.
Parallel evolution can occur through selection on novel mutations, standing genetic variation or adaptive introgression. Uncovering parallelism and introgressed populations can complicate management of threatened species as parallelism may have influenced conservation unit designations and admixed populations are not generally considered under legislations. We examined high coverage whole‐genome sequences of 30 caribou (Rangifer tarandus) from across North America and Greenland, representing divergent intraspecific lineages, to investigate parallelism and levels of introgression contributing to the formation of ecotypes. Caribou are split into four subspecies and 11 extant conservation units, known as designatable units (DUs), in Canada. Using genomes from all four subspecies and six DUs, we undertake demographic reconstruction and confirm two previously inferred instances of parallel evolution in the woodland subspecies and uncover an additional instance of parallelism of the eastern migratory ecotype. Detailed investigations reveal introgression in the woodland subspecies, with introgressed regions found spread throughout the genomes encompassing both neutral and functional sites. Our investigations using whole genomes highlight the difficulties in unequivocally demonstrating parallelism through adaptive introgression in nonmodel species with complex demographic histories, with standing variation and introgression both potentially involved. Additionally, the impact of parallelism and introgression on conservation policy for management units needs to be considered in general, and the caribou designations will need amending in light of our results. Uncovering and decoupling parallelism and differential patterns of introgression will become prevalent with the availability of comprehensive genomic data from nonmodel species, and we highlight the need to incorporate this into conservation unit designations.  相似文献   

15.
Structural variation in acoustic signals may be related either to the factors affecting sound production such as bird morphology, or to vocal adaptations to improve sound transmission in different environments. Thus, variation in acoustic signals can influence intraspecific communication processes. This will ultimately influence divergence in allopatric populations. The study of geographical variation in vocalizations of suboscines provides an opportunity to compare acoustic signals from different populations, without additional biases caused by song learning and cultural evolution typical of oscines. The aim of this study was to compare vocalizations of distinct populations of a suboscine species, the Thorn‐tailed Rayadito. Four types of vocalizations were recorded in five populations, including all three currently accepted subspecies. Comparisons of each type of vocalization among the five populations showed that some variation existed in the repetitive trill, whereas no differences were found among alarm calls and loud trills. Variation in repetitive trills among populations and forest types suggests that sound transmission is involved in vocal differences in suboscines. Acoustic differences are also consistent with distinguishing subspecies bullocki from spinicauda and fulva, but not the two latter subspecies from each other. Our results suggest that the geographical differentiation in vocalizations observed among Thorn‐tailed Rayadito populations is likely to be a consequence of different ecological pressures. Therefore, incipient genetic isolation of these populations is suggested, based on the innate origin of suboscine vocalizations.  相似文献   

16.
Techniques were developed for testing umbelliferous species against naturally-occurring populations of carrot fly in the field. The most efficient technique involved exposure of plants to either first or second generations of the insect in the field, followed by caging of infested plots and trapping of emerged flies in water in yellow water dishes. In a series of field experiments between 1981 and 1989 inclusive, a total of 132 umbelliferous species and sub-species were tested against carrot fly. Seventy-eight of these proved to be new hosts, 27 were confirmed as hosts and 27 failed to support any carrot flies. Six non-umbelliferous plant species failed to be colonised by carrot fly. Sources of variability in investigations of the host range of insects are discussed.  相似文献   

17.
1. In the context of global change, modifications in winter conditions may disrupt the seasonal phenology patterns of organisms, modify the synchrony of closely interacting species and lead to unpredictable outcomes at different ecological scales. 2. Parasites are present in almost every food web and their interactions with hosts greatly contribute to ecosystem functioning. Among upper trophic levels of terrestrial ecosystems, insect parasitoids are key components in terms of functioning and species richness. Parasitoids respond to climate change in similar ways to other insects, but their close relationship with their hosts and their particular life cycle – alternating between parasitic and free-living forms – make them special cases. 3. This article reviews of the mechanisms likely to undergo plastic or evolutionary adjustments when exposed to climate change that could modify insect seasonal strategies. Different scenarios are then proposed for the evolution of parasitoid insect seasonal ecology by exploring three anticipated outcomes of climate change: (i) decreased severity of winter cold; (ii) decreased winter duration; and (iii) increased extreme seasonal climatic events and environmental stochasticity. 4. The capacities of insects to adapt to new environmental conditions, either through plasticity or genetic evolution, are highlighted. They may reduce diapause expression, adapt to changing cues to initiate or terminate diapause, increase voltinism, or develop overwintering bet-hedging strategies, but parasitoids' responses will be highly constrained by those of their hosts. 5. Changes in the seasonal ecology of parasitoids may have consequences on host–parasitoid synchrony and population cycles, food-web functioning, and ecosystem services such as biological pest control.  相似文献   

18.
Little is known about what controls effective sizes and migration rates among parasite populations. Such data are important given the medical, veterinary, and economic (e.g., fisheries) impacts of many parasites. The autogenic-allogenic hypothesis, which describes ecological patterns of parasite distribution, provided the foundation on which we studied the effects of life cycles on the distribution of genetic variation within and among parasite populations. The hypothesis states that parasites cycling only in freshwater hosts (autogenic life cycle) will be more limited in their dispersal ability among aquatic habitats than parasites cycling through freshwater and terrestrial hosts (allogenic life cycle). By extending this hypothesis to the level of intraspecific genetic variation, we examined the effects of host dispersal on parasite gene flow. Our a priori prediction was that for a given geographic range, autogenic parasites would have lower gene flow among subpopulations. We compared intraspecific mitochondrial DNA variation for three described species of trematodes that infect salmonid fishes. As predicted, autogenic species had much more highly structured populations and much lower gene flow among subpopulations than an allogenic species sampled from the same locations. In addition, a cryptic species was identified for one of the autogenic trematodes. These results show how variation in life cycles can shape parasite evolution by predisposing them to vastly different genetic structures. Thus, we propose that knowledge of parasite life cycles will help predict important evolutionary processes such as speciation, coevolution, and the spread of drug resistance.  相似文献   

19.
C-band variability and phylogeny of Lacertidae   总被引:1,自引:1,他引:0  
E. Olmo  G. Odierna  O. Cobror 《Genetica》1986,71(1):63-74
The karyology of various species from the family Lacertidae (Reptilia, Sauria) has been studied with conventional and C-banding techniques.The study shows that this family is not so conservative from a karyological viewpoint as considered till now. In fact a higher diploid number than that generally observed in most species of Lacertidae and supernumerary chromosomes have been observed in three of the species investigated. Moreover an evident interand intraspecific variability has been found in the C-banding pattern of the various species studied. The situation found in Podarcis sicula is particularly remarkable. Different C-banding patterns have been observed in three different subspecies and in two populations of the same subspecies. These variations do not show a well defined trend and their role in the evolution of lacertid lizards is discussed.The C-banding analysis evidences also the existence in two of the species studied of a female sex heteromorphism, in which the W chromosome has the same shape and size as the Z, but differs from it in being completely heterochromatic. This situation reminds that observed in some snakes and suggests that in lacertid lizards the evolution of sex chromosomes might have followed the same steps previously hypothesized for ophidians.  相似文献   

20.
The phylogeographic structure of the widely distributed arid and semi-arid Australian splendid fairy-wren Malurus splendens was investigated by using variation in plumage characters and mitochondrial DNA (mtDNA). We examined sequences of the mtDNA ND2 gene and used spectrophotometry to quantify chromatic variation in plumage in order to test the current morphology-based intraspecific taxonomy of M. splendens and to discriminate between hypotheses invoking allopatric and parapatric processes in the origin of diversity in the complex. Genetic diversity of M. splendens fell into three divergent geographically structured clades. One represents populations ascribed to the western subspecies M. s. splendens , the other populations of central M. s. musgravi and the third all eastern populations currently ascribed to M. s. emmottorum and M. s. melanotus . Plumage patterns clearly differentiate M. s. splendens and M. s. musgravi, and spectrophotometry identified a step-wise transition in spectra between M. s. melanotus and M. s. emmottorum . Congruence of patterns of phenotypic and genetic variation among western, central and eastern populations of M. splendens strongly suggests that these populations have diverged in allopatry on either side of historical biogeographic barriers in this region. Decoupled patterns of phenotypic and genetic diversity suggest that the divergence of M. s. melanotus and M. s. emmottorum may have occurred without periods of isolation perhaps in response to differences in local environmental conditions, or alternatively, mtDNA and plumage may have different rates of evolution. Critically, we encountered issues with the placement of the root of the M. splendens complex. The root was placed within the subspecies M. s. splendens separating its northern and southern populations and rendering the subspecies paraphyletic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号