首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Shigella flexneri degP mutant, which was defective for plaque formation in Henle cell monolayers, had a reduced amount of IcsA detectable on the bacterial surface with antibody. However, the mutant secreted IcsA to the outer membrane at wild-type levels. This suggests that IcsA adopts an altered conformation in the outer membrane of the degP mutant with reduced exposure on the cell surface. IcsA is, therefore, unlikely to be accessible to actin-nucleating proteins within the eukaryotic cell cytoplasm, which is required for bacterial movement within the host cell and cell-to-cell spread. The degP mutant was somewhat more sensitive to detergents, antibiotics, and the antimicrobial peptide magainin, indicating that the degP phenotype was not limited to IcsA surface presentation. The plaque defect of the degP mutant, which is independent of DegP protease activity, was suppressed by overexpression of the periplasmic chaperone Skp but not by SurA. S. flexneri skp and surA mutants failed to form plaques in Henle cell monolayers and were defective in cell surface presentation and polar localization of IcsA. Therefore, the three periplasmic folding factors DegP, Skp, and SurA were all required for IcsA localization and plaque formation by S. flexneri.  相似文献   

2.
β-Barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the nonviable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli.  相似文献   

3.
The periplasmic chaperones Skp, SurA, and DegP are implicated in the biogenesis of outer membrane proteins (OMPs) in Escherichia coli. Here, we investigated whether these chaperones exert similar functions in Neisseria meningitidis. Although N. meningitidis does not contain a homolog of the protease/chaperone DegP, it does possess a homolog of another E. coli protein, DegQ, which can functionally replace DegP when overproduced. Hence, we examined whether in N. meningitidis, DegQ acts as a functional homolog of DegP. Single skp, surA, and degQ mutants were easily obtained, showing that none of these chaperones is essential in N. meningitidis. Furthermore, all combinations of double mutants were generated and no synthetic lethality was observed. The absence of SurA or DegQ did not affect OMP biogenesis. In contrast, the absence of Skp resulted in severely lower levels of the porins PorA and PorB but not of other OMPs. These decreased levels were not due to proteolytic activity of DegQ, since porin levels remained low in a skp degQ double mutant, indicating that neisserial DegQ is not a functional homolog of E. coli DegP. The absence of Skp resulted in lower expression of the porB gene, as shown by using a P(porB)-lacZ fusion. We found no cross-species complementation when Skp of E. coli or N. meningitidis was heterologously expressed in skp mutants, indicating that Skp functions in a species-specific manner. Our results demonstrate an important role for Skp but not for SurA or DegQ in OMP biogenesis in N. meningitidis.  相似文献   

4.
Fimbrial ushers are the largest β-barrel outer membrane proteins (OMPs) known to date, which function in the polymerization of fimbriae and their translocation to the bacterial surface. Folding and assembly of these complex OMPs are not characterized. Here, we investigate the role of periplasmic chaperones (SurA, Skp, DegP, and FkpA) and individual components of the β-barrel assembly machinery (BAM) complex (BamA, BamB, BamC, and BamE) in the folding of the Escherichia coli FimD usher. The FimD level is dramatically reduced (~30-fold) in a surA null mutant, but a strong cell envelope stress is constitutively activated with upregulation of DegP (~10-fold). To demonstrate a direct role of SurA, FimD folding was analyzed in a conditional surA mutant in which SurA expression was controlled. In this strain, FimD is depleted from bacteria in parallel to SurA without significant upregulation of DegP. Interestingly, the dependency on SurA is higher for FimD than for other OMPs. We also demonstrate that a functional BAM complex is needed for folding of FimD. In addition, FimD levels were strongly reduced (~5-fold) in a mutant lacking the accessory lipoprotein BamB. The critical role of BamB for FimD folding was confirmed by complementation and BamB depletion experiments. Similar to SurA dependency, FimD showed a stronger dependency on BamB than OMPs. On the other hand, folding of FimD was only marginally affected in bamC and bamE mutants. Collectively, our results indicate that FimD usher follows the SurA-BamB pathway for its assembly. The preferential use of this pathway for the folding of OMPs with large β-barrels is discussed.  相似文献   

5.
SurA, Skp, FkpA, and DegP constitute a chaperone network that ensures biogenesis of outer membrane proteins (OMPs) in Gram‐negative bacteria. Both Skp and FkpA are holdases that prevent the self‐aggregation of unfolded OMPs, whereas SurA accelerates folding and DegP is a protease. None of these chaperones is essential, and we address here how functional plasticity is manifested in nine known null strains. Using a comprehensive computational model of this network termed OMPBioM, our results suggest that a threshold level of steady state holdase occupancy by chaperones is required, but the cell is agnostic to the specific holdase molecule fulfilling this function. In addition to its foldase activity, SurA moonlights as a holdase when there is no expression of Skp and FkpA. We further interrogate the importance of chaperone–client complex lifetime by conducting simulations using lifetime values for Skp complexes that range in length by six orders of magnitude. This analysis suggests that transient occupancy of durations much shorter than the Escherichia coli doubling time is required. We suggest that fleeting chaperone occupancy facilitates rapid sampling of the periplasmic conditions, which ensures that the cell can be adept at responding to environmental changes. Finally, we calculated the network effects of adding multivalency by computing populations that include two Skp trimers per unfolded OMP. We observe only modest perturbations to the system. Overall, this quantitative framework of chaperone–protein interactions in the periplasm demonstrates robust plasticity due to its dynamic binding and unbinding behavior.  相似文献   

6.
Wu S  Ge X  Lv Z  Zhi Z  Chang Z  Zhao XS 《The Biochemical journal》2011,438(3):505-511
The OMPs (outer membrane proteins) of Gram-negative bacteria have to be translocated through the periplasmic space before reaching their final destination. The aqueous environment of the periplasmic space and high permeability of the outer membrane engender such a translocation process inevitably challenging. In Escherichia coli, although SurA, Skp and DegP have been identified to function in translocating OMPs across the periplasm, their precise roles and their relationship remain to be elucidated. In the present paper, by using fluorescence resonance energy transfer and single-molecule detection, we have studied the interaction between the OMP OmpC and these periplasmic quality control factors. The results of the present study reveal that the binding rate of OmpC to SurA or Skp is much faster than that to DegP, which may lead to sequential interaction between OMPs and different quality control factors. Such a kinetic partitioning mechanism for the chaperone-substrate interaction may be essential for the quality control of the biogenesis of OMPs.  相似文献   

7.
A global search for extracytoplasmic folding catalysts in Escherichia coli was undertaken using different genetic systems that produce unstable or misfolded proteins in the periplasm. The extent of misfolding was monitored by the increased activity of the σE regulon that is specifically induced by misfolded proteins in the periplasm. Using multicopy libraries, we cloned two genes, surA and fkpA , that decreased the σE-dependent response constitutively induced by misfolded proteins. According to their sequences and their biochemical activities, SurA and FkpA belong to two different peptidyl prolyl isomerase (PPI) families. Interestingly, surA was also selected as a multicopy suppressor of a defined htrM ( rfaD ) null mutation. Such mutants produce a defective lipopolysaccharide that is unable to protect outer membrane proteins from degradation during folding. The SurA multicopy suppression effect in htrM ( rfaD ) mutant bacteria was directly associated with its ability to catalyse the folding of outer membrane proteins immediately after export. Finally, Tn 10 insertions were isolated, which led to an increased activity of the σE regulon. Such insertions were mapped to the dsb genes encoding catalysts of the protein disulphide isomerase (PDI) family, as well as to the surA , fkpA and ompH/skp genes. We propose that these three proteins (SurA, FkpA and OmpH/Skp) play an active role either as folding catalysts or as chaperones in extracytoplasmic compartments.  相似文献   

8.
Protein secretion in Gram-negative bacteria is essential for both cell viability and pathogenesis. The vast majority of secreted proteins exit the cytoplasm through a transmembrane conduit called the Sec translocon in a process that is facilitated by ancillary modules, such as SecA, SecDF-YajC, YidC, and PpiD. In this study we have characterized YfgM, a protein with no annotated function. We found it to be a novel ancillary subunit of the Sec translocon as it co-purifies with both PpiD and the SecYEG translocon after immunoprecipitation and blue native/SDS-PAGE. Phenotypic analyses of strains lacking yfgM suggest that its physiological role in the cell overlaps with the periplasmic chaperones SurA and Skp. We, therefore, propose a role for YfgM in mediating the trafficking of proteins from the Sec translocon to the periplasmic chaperone network that contains SurA, Skp, DegP, PpiD, and FkpA.  相似文献   

9.
The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane. In proteobacteria, the vast majority of outer membrane proteins consists of β-barrel proteins and lipoproteins. Thus, PnlH represents a new kind of outer membrane protein. In Escherichia coli, periplasmic chaperones SurA, Skp, and DegP work together with the β-barrel assembly machinery (Bam) to target and insert β-barrel proteins into the outer membrane. In this work, we showed that SurA is required for an efficient targeting of PnlH to the outer membrane. Moreover, we were able to detect an in vitro interaction between SurA and the PnlH signal sequence. Since the PnlH signal sequence contains a highly hydrophobic region, we propose that SurA protects it from the hydrophobic periplasm during targeting of PnlH to the outer membrane. We also studied the nature of the information carried by the PnlH signal sequence responsible for its targeting to the outer membrane after exportation by the Tat system.  相似文献   

10.
Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent chains after their release from the ribosome suggesting the ability of Skp to recognize early folding intermediates of outer membrane proteins. Pulse labeling of OmpA in spheroplasts prepared from an skp null mutant revealed a specific requirement of Skp for the release of newly translocated outer membrane proteins from the plasma membrane. Deltaskp mutant cells are viable and show only slight changes in the physiology of their outer membranes. In contrast, double mutants deficient both in Skp and the periplasmic protease DegP (HtrA) do not grow at 37 degrees C in rich medium. We show that in the absence of an active DegP, a lack of Skp leads to the accumulation of protein aggregates in the periplasm. Collectively, our data demonstrate that Skp is a molecular chaperone involved in generating and maintaining the solubility of early folding intermediates of outer membrane proteins in the periplasmic space of Gram-negative bacteria.  相似文献   

11.
The expression of assembly-defective outer membrane proteins can confer lethality if they are not degraded by envelope proteases. We report here that the expression of a mutant OmpC protein, OmpC(2Cys), which forms disulfide bonds in the periplasm due to the presence of two non-native cysteine residues, is lethal in cells lacking the major periplasmic protease, DegP. This lethality is not observed in dsbA strains that have diminished ability to form periplasmic disulfide bonds. Our data show that this OmpC(2Cys)-mediated lethality in a degP::Km(r) dsbA(+) background can be reversed by a DegP variant, DegP(S210A), that is devoid of its proteolytic activity but retains its reported chaperone activity. However, DegP(S210A) does not reverse the lethal effect of OmpC(2Cys) by correcting its assembly but rather by capturing misfolded mutant OmpC polypeptides and thus removing them from the assembly pathway. Displacement of OmpC(2Cys) by DegP(S210A) also alleviates the negative effect that the mutant OmpC protein has on wild-type OmpF.  相似文献   

12.
In Escherichia coli, sigma(E) regulon functions are required for envelope homeostasis during stress and are essential for viability under all growth conditions. The E. coli genome encodes approximately 100 lipoproteins, and 6 of these are regulated by sigma(E). Phenotypes associated with deletion of each of these lipoproteins are the subject of this report. One lipoprotein, YfiO, is essential for cellular viability. However, overexpression of this protein is not sufficient to alleviate the requirement of sigma(E) for viability, suggesting that the sigma(E) regulon provides more than one essential function. The remaining five lipoproteins in the sigma(E) regulon are nonessential; cells are viable even when all five are removed simultaneously. Deletion of three nonessential lipoprotein genes (nlpB, yraP, ygfL) results in the exhibition of phenotypes that suggest they are important for maintenance of the integrity of the cell envelope. deltanlpB cells are selectively sensitive to rifampin; deltayraP cells are selectively sensitive to sodium dodecyl sulfate. Such selective sensitivity has not been previously reported. Both deltayraP and deltanlpB are synthetically lethal with surA::Cm, which encodes a periplasmic chaperone and PPIase, suggesting that NlpB and YraP play roles in a periplasmic folding pathway that functions in parallel with that of SurA. Finally, the deltayfgL mutant exhibits a broad range of envelope defects, including sensitivity to several membrane-impermeable agents, an altered outer membrane protein profile, synthetic lethality with both surA::Cm and deltafkpA::Cm strains, and sensitivity to a bactericidal permeability-increasing peptide. We suggest that this lipoprotein performs a very important but as-yet-unknown function in maintaining the integrity of the cell envelope.  相似文献   

13.
Each cell hosts thousands of proteins that vary greatly in abundance, structure, and chemical properties. To ensure that all proteins are biologically active and properly localized, efficient quality control systems have evolved. While the structure, function, and regulation of some individual protein folding factors and proteases were resolved up to atomic resolution, others remain poorly characterized. In addition, little is known about which factors are required for viability under specific stress conditions. We therefore determined the physiological implications of 15 factors of the E. coli cell envelope by an integrated genetic approach comprising phenotypic analyses. Our data indicate that surA and tsp null mutations are a lethal combination in rich medium, that surA dsbA and surA dsbC double mutants are temperature sensitive, and that surA ptrA, surA yfgC, dsbA fkpA, degP tsp, degP ppiD, tsp ppiD, and degP dsbA double mutants are temperature sensitive in rich medium containing 0.5 M NaCl, while degP dsbA, degP yfgC, tsp ydgD, and degP tsp double mutants do not grow in the presence of SDS/EDTA. Furthermore, we show that in degP dsbA, degP tsp, and degP yfgC double mutants a subpopulation of LamB exists as unfolded monomers. In addition, dsbA null mutants expressed lower levels of the outer membrane proteins LptD, LamB, FhuA, and OmpW while FhuA levels were reduced in surA single and degP ppiD double mutants. Lower FhuA levels in degP ppiD strains depend on Tsp, since in a tsp degP ppiD triple mutant FhuA levels are restored.  相似文献   

14.
Zhang M  Lin S  Song X  Liu J  Fu Y  Ge X  Fu X  Chang Z  Chen PR 《Nature chemical biology》2011,7(10):671-677
Acid chaperones are essential factors in preserving the protein homeostasis for enteric pathogens to survive in the extremely acidic mammalian stomach (pH 1-3). The client proteins of these chaperones remain largely unknown, primarily because of the exceeding difficulty of determining protein-protein interactions under low-pH conditions. We developed a genetically encoded, highly efficient protein photocrosslinking probe, which enabled us to profile the in vivo substrates of a major acid-protection chaperone, HdeA, in Escherichia coli periplasm. Among the identified HdeA client proteins, the periplasmic chaperones DegP and SurA were initially found to be protected by HdeA at a low pH, but they subsequently facilitated the HdeA-mediated acid recovery of other client proteins. This unique, ATP-independent chaperone cooperation in the ATP-deprived E. coli periplasm may support the acid resistance of enteric bacteria. The crosslinker would be valuable in unveiling the physiological interaction partners of any given protein and thus their functions under normal and stress conditions.  相似文献   

15.
Sorting of proteins destined to the surface or the extracellular milieu is mediated by specific machineries, which guide the protein substrates towards the proper route of secretion and determine the compartment in which folding occurs. In Gram-negative bacteria, the two-partner secretion (TPS) pathway is dedicated to the secretion of large proteins rich in β-helical structure. The secretion of the filamentous haemagglutinin (FHA), a 230 kDa adhesin of Bordetella pertussis , represents a model TPS system. FHA is exported by the Sec machinery and transits through the periplasm in an extended conformation. From there it is translocated across the outer membrane by its dedicated transporter FhaC to finally fold into a long β-helix at the cell surface in a progressive manner. In this work, we show that B. pertussis lacking the periplasmic chaperone/protease DegP has a strong growth defect at 37°C, and the integrity of its outer membrane is compromised. While both phenotypes are significantly aggravated by the presence of FHA, the chaperone activity of DegP markedly alleviates the periplasmic stress. In vitro , DegP binds to non-native FHA with high affinity. We propose that DegP chaperones the extended FHA polypeptide in the periplasm and is thus involved in the TPS pathway.  相似文献   

16.
Little is known on how β‐barrel proteins are assembled in the outer membrane (OM) of Gram‐negative bacteria. SurA has been proposed to be the primary chaperone escorting the bulk mass of OM proteins across the periplasm. However, the impact of SurA deletion on the global OM proteome has not been determined, limiting therefore our understanding of the function of SurA. By using a differential proteomics approach based on 2‐D LC‐MSn, we compared the relative abundance of 64 OM proteins, including 23 β‐barrel proteins, in wild‐type and surA strains. Unexpectedly, we found that the loss of SurA affects the abundance of eight β‐barrel proteins. Of all the decreased proteins, FhuA and LptD are the only two for which the decreased protein abundance cannot be attributed, at least in part, to decreased mRNA levels in the surA strain. In the case of LptD, an essential protein involved in OM biogenesis, our data support a role for SurA in the assembly of this protein and suggest that LptD is a true SurA substrate. Based on our results, we propose a revised model in which only a subset of OM proteins depends on SurA for proper folding and insertion in the OM.  相似文献   

17.
Enhancement of the production of soluble recombinant penicillin acylase in Escherichia coli via coexpression of a periplasmic protease/chaperone, DegP, was demonstrated. Coexpression of DegP resulted in a shift of in vivo penicillin acylase (PAC) synthesis flux from the nonproductive pathway to the productive one when pac was overexpressed. The number of inclusion bodies, which consist primarily of protein aggregates of PAC precursors in the periplasm, was highly reduced, and the specific PAC activity was highly increased. DegP was a heat shock protein induced in response to pac overexpression, suggesting that the protein could possibly suppress the physiological toxicity caused by pac overexpression. Coexpression of DegP(S210A), a DegP mutant without protease activity but retaining chaperone activity, could not suppress the physiological toxicity, suggesting that DegP protease activity was primarily responsible for the suppression, possibly by degradation of abnormal proteins when pac was overexpressed. However, a shortage of periplasmic protease activity was not the only reason for the deterioration in culture performance upon pac overexpression because coexpression of a DegP-homologous periplasmic protease, DegQ or DegS, could not suppress the physiological toxicity. The chaperone activity of DegP is proposed to be another possible factor contributing to the suppression.  相似文献   

18.

Background  

The inner membrane-anchored periplasmic folding factor PpiD is described as a parvulin-like peptidyl prolyl isomerase (PPIase) that assists in the maturation of the major beta-barrel outer membrane proteins (OMPs) of Escherichia coli. More recent work however, calls these findings into question. Here, we re-examined the role of PpiD in the E. coli periplasm by analyzing its functional interplay with other folding factors that influence OMP maturation as well as general protein folding in the periplasmic compartment of the cell, such as SurA, Skp, and DegP.  相似文献   

19.
The periplasmic chaperone Skp has long been implicated in the assembly of outer membrane proteins (OMPs) in Escherichia coli. It has been shown to interact with unfolded OMPs, and the simultaneous loss of Skp and the main periplasmic chaperone in E. coli, SurA, results in synthetic lethality. However, a Δskp mutant displays only minor OMP assembly defects, and no OMPs have been shown to require Skp for their assembly. Here, we report a role for Skp in the assembly of the essential OMP LptD. This role may be compensated for by other OMP assembly proteins; in the absence of both Skp and FkpA or Skp and BamB, LptD assembly is impaired. Overexpression of SurA does not restore LptD levels in a Δskp ΔfkpA double mutant, nor does the overexpression of Skp or FkpA restore LptD levels in the ΔsurA mutant, suggesting that Skp acts in concert with SurA to efficiently assemble LptD in E. coli. Other OMPs, including LamB, are less affected in the Δskp ΔfkpA and Δskp bamB::kan double mutants, suggesting that Skp is specifically necessary for the assembly of certain OMPs. Analysis of an OMP with a domain structure similar to that of LptD, FhuA, suggests that common structural features may determine which OMPs require Skp for their assembly.  相似文献   

20.
The chaperone/protease DegP belongs to the HtrA superfamily and is involved in protein quality control in the periplasm of Gram-negative bacteria. In Escherichia coli, typical substrates are unfolded or misfolded globular proteins that trigger the rearrangement of inactive DegP hexamers into substrate-sequestering 12- or 24-mers 'cages' for refolding or degradation. In Bordetella pertussis, DegP(Bp) facilitates, in addition, the secretion of FHA, a long β-helical adhesin that passes through the periplasm in an extended conformation. We show that DegP(Bp) exists as soluble trimers and as a membrane-associated form. Different substrates interact differently with the distinct forms of DegP(Bp), and membrane-associated DegP(Bp) has high affinity for non-native FHA. Unlike more globular substrates, FHA does not efficiently mediate rearrangement of trimers into proteolytically active, short-lived dodecamers. In contrast to these dodecamers, membrane-associated DegP(Bp) is not committed to substrate degradation, although it is proteolytically competent. In B. pertussis, membrane-associated DegP(Bp) thus represents a specific functional form serving as a holding chaperone for client proteins including FHA. If FHA secretion is impaired, membrane-associated DegP(Bp) participates in its degradation. This form of DegP(Bp) is appropriate to handle substrates unsuitable to be sequestered in cages or non-folded, secretory proteins that must not be degraded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号