首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 4 毫秒
1.
Adult trees of Quercus petraea were submitted to controlled water shortage in a natural stand near Nancy, France. Diurnal course of net CO2 assimilation rate (A) was measured in situ together with chlorophyll a fluorescence determined on dark adapted leaves. In 1990, trees experienced a strong water stress, with predawn and midday leaf water potentials below –2·0 and –3·0 MPa, respectively. Diurnal course of A of well-watered trees exhibited sometimes important midday decreases in A related to high temperature and vapour pressure deficit. Decreases in initial (Fo) and maximal (Fm) fluorescence and sometimes in photochemical efficiency of photosystem II (Fv/Fm) were observed and probably revealed the onset of mechanisms for thermal de-excitation. These mechanisms were shown to be sensitive to dithiothreitol. All these effects were reversible and vanished almost completely overnight. Therefore, they may be considered as protective mechanisms adjusting activity of photosystem II to the electron requirement for photosynthesis. Water stress amplified these reactions: A was strongly decreased, showing important midday depression; diurnal reductions in Fm and Fv/Fm were enhanced. The same trends were observed during summer 1991, despite a less marked drought. These protective mechanisms seemed very effective, as no photoinhibitory damage to PS II could be detected in either water stressed or control trees.  相似文献   

2.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

3.
Apex and Bristol cultivars of oilseed rape (Brassica napus) were irradiated with 0.63 W m?2 of UV-B over 5 d. Analyses of the response of net leaf carbon assimilation to intercellular CO2 concentration were used to examine the potential limitations imposed by stomata, carboxylation velocity and capacity for regeneration of ribulose 1,5-bis-phosphate on leaf photosynthesis. Simultaneous measurements of chlorophyll fluorescence were used to estimate the maximum quantum efficiency of photosystem II (PSII) photochemistry, the quantum efficiency of linear electron transport at steady-state photosynthesis, and the light and CO2-saturated rate of linear electron transport. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) content and activities were assayed in vitro. In both cultivars the UV-B treatment resulted in decreases in the light-saturated rate of CO2 assimilation, which were accompanied by decreases in carboxylation velocity and Rubisco content and activity. No major effects of UV-B were observed on end-product inhibition and stomatal limitation of photosynthesis or the rate of photorespiration relative to CO2 assimilation. In the Bristol cultivar, photoinhibition of PSII and loss of linear electron transport activity were observed when CO2 assimilation was severely inhibited. However, the Apex cultivar exhibited no major inhibition of PSII photochemistry or linear electron transport as the rate of CO2 assimilation decreased. It is concluded that loss of Rubisco is a primary factor in UV-B inhibition of CO2 assimilation.  相似文献   

4.
The effects of chilling under low light (9/7 °C, 100 µmol m?2 s?1) on the photosynthetic and antioxidant capacities and subsequent recovery were examined in two (one tolerant and one sensitive) cucumber genotypes. Chilling resulted in an irreversible inhibition of net CO2 assimilation and growth for the sensitive genotype, which was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (Vcmax), the capacity for ribulose‐1,5‐bisphosphate regeneration (Jmax), Rubisco content and activity, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO2 supply or inorganic phosphate limitation. In contrast, CO2 assimilation for the tolerant genotype fully recovered after chill. The chill‐induced decrease in the proportion of electron flux for photosynthetic carbon reduction was mostly compensated by an O2‐dependent alternative electron flux driven by the water–water cycle, especially in the sensitive genotype. Compared with the tolerant genotype, the sensitive genotype after chill showed reduced capacity for scavenging reactive oxygen species and increased accumulation of reactive oxygen species. The balance between O2‐dependent alternative electron flux and the capacity for scavenging reactive oxygen species in response to chill plays a major role in determining the tolerance of cucumber leaves to this stress factor. It is concluded that the water–water cycle operates at high rates when CO2 assimilation is restricted in cucumber leaves subjected to chill and low light conditions.  相似文献   

5.
The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.  相似文献   

6.
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat‐induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat‐dependent alterations of thylakoid‐associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western‐blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non‐photochemical fluorescence quenching. Recovery experiments showed that heat‐dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat‐induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat‐dependent reduction of the Rubisco activation state.  相似文献   

7.
Using a combination of gas-exchange and chlorophyll fluorescence measurements, low apparent CO2/O2 specificity factors (1300 mol mol?1) were estimated for the leaves of two deciduous tree species (Fagus sylvatica and Castanea sativa). These low values contrasted with those estimated for two herbaceous species and were ascribed to a drop in the CO2 mole fraction between the intercellular airspace (Ci) and the catalytic site of Rubisco (Cc) due to internal resistances to CO2 transfer. Cc. was calculated assuming a specificity of Rubisco value of 2560 mol mol?1. The drop between Ci and Cc was used to calculate the internal conductance for CO2 (gi). A good correlation between mean values of net CO2 assimilation rate (A) and gi was observed within a set of data obtained using 13 woody plant species, including our own data. We report that the relative limitation of A, which can be ascribed to internal resistances to CO2 transfer, was 24–30%. High internal resistances to CO2 transfer may explain the low apparent maximal rates of carboxylation and electron transport of some woody plant species calculated from A/Ci curves.  相似文献   

8.
Naturally grown trees of Mediterranean evergreen oak (Quercus ilex L.), representing the climax species of the region, were enclosed in six large open-top chambers and exposed to ambient and elevated CO2 concentrations during a 3 year period. Maximum daily net photosynthetic rates measured at the two different CO2 concentrations were from 30 to 100% higher in elevated than in ambient [CO2] throughout the experimental period. The increase in maximum daily photosynthesis was also accompanied by a 93% rise in the apparent quantum yield of CO2 assimilation, measured during periods of optimum soil moisture conditions. Hence, no clear evidence of down-regulation of net photosynthetic activity was found. Interactions between atmospheric CO2 concentration and plant water stress were studied by following the natural evolution of drought in different seasons and years. At each level of water stress, the maximum rate of carbon assimilation was higher in elevated than in ambient [CO2] by up to 100%. Analysis of in vivo chlorophyll fluorescence parameters in normal (21%) and low (2%) oxygen concentrations provided useful insights into the functioning and stability of the photosynthetic processes. The photochemical efficiency of PSII (Fv/Fm) progressively decreased as drought conditions became more evident; this trend was accentuated under elevated [CO2]. Thermal de-excitation processes were possibly more significant under elevated than under ambient [CO2], in a combination of environmental stresses. This research suggests two possible conclusions: (i) a ‘positive’ interaction between elevated [CO2] and carbon metabolism can be obtained through relief of water stress limitation in the summer months, and (ii) elevated [CO2], under drought conditions, may also enhance the significance of slow-relaxing quenching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号