首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth strategy of an emergent plant, Typha orientalis Presl, was examined in experimental ponds in comparison with two other Typha species distributed in Japan, Typha latifolia L. and Typha angustifolia L. T. orientalis showed the greatest ability of vegetative reproduction at the expense of growth in height. T. orientalis started to produce new ramets earlier than T. latifolia and T. angustifolia. These results suggest that T. orientalis should be a rather pioneer-like species and would be restricted to disturbed habitats.  相似文献   

2.
Disturbance is common and can fragment clones of plants. Clonal fragmentation may affect the density and growth of ramets so that it could alter intraspecific competition. To test this hypothesis, we grew one (low density), five (medium density) or nine (high density) parent ramets of the floating invasive plant Pistia stratiotes in buckets, and newly produced offspring ramets were either severed (with fragmentation) or remained connected to parent ramets (no fragmentation). Increasing density reduced biomass of the whole clone (i.e. parent ramet plus its offspring ramets), showing intense intraspecific competition. Fragmentation decreased biomass of offspring ramets, but increased biomass of parent ramets and the whole clone, suggesting significant resource translocation from parent to offspring ramets when clones were not fragmented. There was no interaction effect of density x fragmentation on biomass of the whole clone, and fragmentation did not affect competition intensity index. We conclude that clonal fragmentation does not alter intraspecific competition between clones of P. stratiotes, but increases biomass production of the whole clone. Thus, fragmentation may contribute to its interspecific competitive ability and invasiveness, and intentional fragmentation should not be recommended as a measure to stop the rapid growth of this invasive species.  相似文献   

3.
Summary Armstrong (1982, 1983) predicted that all ramets within a clone should have the same ratio of biomass allocation to sexual reproduction versus vegetative growth. He presented data (1984) that he interpreted as showing that Solidago altissima ramets in a clone do have the predicted constant allocation ratio. Reanalysis of his methods shows that this conclusion was an artifact of his analysis. A simulation using random numbers and Armstrong's analysis showed the same pattern as his data. Data from S. altissima ramets of a single clone grown in a greenhouse experiment, using a different analysis, illustrated that the allocation ratios within a clone can be highly variable.  相似文献   

4.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

5.
This study follows the outcome of long-term competition between a broad-leaved and a narrowleaved Typha species, T. latifolia and T. angustifolia respectively, in a eutrophic lake. The lake was bordered by a zone of T. latifolia, at one location interrupted by a T. angustifolia stand. Distributional changes of the T. angustifolia stand and the adjacent zone of T. latifolia were measured on aerial photographs (13 years) and along ground-level transects (6 years). A second stand of T. angustifolia was established with transplanted ramets within a formerly homogeneous zone of T. latifolia, and displacement between the two species was measured along ground-level transects after 6 years. Differences between the species in shoot performance were investigated to help explain the relative competitive abilities of the two Typha species. T. angustifolia expanded at the expense of T. latifolia at all water depths where both species occurred, except in very shallow water. Expansion rates suggest that T. angustifolia was not affected by the presence of T. latifolia in water depths exceeding 0.25 m. The Typha species were significantly negatively associated according to rank correlations of shoot densities, and changes of shoot densities, along the transects. These results suggest that T. angustifolia is competitively superior to T. latifolia, contradicting earlier studies. The higher competitive ability of T. angustifolia is consistent with its having taller shoots and a higher standing crop in early summer. Further, shoot height distributions indicated a closer integration of shoot emergence during spring in T. angustifolia than in T. latifolia. A high leaf area/shoot weight ratio suggest that T. latifolia may instead be relatively fast-growing, achieving competitive superiority over narrower-leaved Typha species during a transient period after simultaneous seedling establishment.  相似文献   

6.
The responses of root aerobic respiration to hypoxia in three common Typha species were examined. Typha latifolia L., T. orientalis Presl, and T. angustifolia L. were hydroponically cultivated under both aerobic and hypoxic growth conditions to measure root oxygen consumption rates. Hypoxia significantly enhanced the root aerobic respiration capacity of the two deep-water species, T. orientalis and T. angustifolia, while it did not affect that of the shallow-water species, T. latifolia. T. angustifolia increased its root porosity and root mass ratio, while T. latifolia increased its root diameter under the hypoxic growth conditions. The relative growth rates in biomass of T. orientalis and T. angustifolia were 59 and 39% higher, respectively, under the hypoxic growth conditions than under the aerobic growth conditions. In contrast, that of T. latifolia did not differ between the two conditions. In T. orientalis and T. angustifolia, enhanced root aerobic respiration rates under the hypoxic growth conditions would have increased the nutrient uptake, and thus higher relative growth rates were obtained. For the deep-water species, T. orientalis and T. angustifolia, the root aerobic respiration capacity was enhanced, probably in order to maintain the generation of respiratory energy under hypoxia.  相似文献   

7.
A clonal plant in heterogeneous environments is usually expected to profit from resource exchange via a clonal network where ramets placed in contrasting environments can specialise so to acquire the most abundant resources. An experiment was designed using the three member clonal system of Eriophorum angustifolium, which consisted of one parent ramet growing in a resource poor environment and two offspring: one was limited in growth by nutrients while the other was light limited; the contrast in availability of limited resources between the offspring ramets was high, medium or none, with the system either connected or severed. The total resource availability was the same in all treatments. We proposed four possible scenarios for the system: offspring ramets will share resources via the deficient parent ramet, and the whole clone will profit from the contrasting environment (scenario 1); offspring ramets will support exclusively the parent ramet, and the whole clone will profit from a homogeneous environment (scenario 2); offspring ramets will stop the export of the limiting resource to the parent ramet, with split and connected treatments not differing (scenario 3); and offspring ramets will exhaust the carbon stored in the biomass of the parental ramet; offspring ramet will profit from connection (scenario 4). In the experiment, the limiting resources were sent to the strongest sink (scenario 2). The parent ramet growing in a deficient environment received the highest support in the treatment where both offspring ramets were growing in the same conditions (no-contrast treatment). Production of new shoots, but not biomass of whole clone, was supported in a homogenous environment. The experiment revealed that multiple stresses might prohibit free exchange of limiting resources via the clonal network and supports the idea that experimental studies on more complex clones are essential for understanding the costs and benefits of clonal growth.  相似文献   

8.
Mc Millan , Calvin . (U. Texas, Austin.) Salt tolerance within a Typha population. Amer. Jour. Bot. 46(7): 521–526. Illus. 1959.—Typha in a disturbed salt flat near Lincoln, Nebraska, provided material for an examination of population dynamics. Within the population, clones of T. angustifolia L. tended to occupy the drier sites and those of T. latifolia L. occupied the sites of greater moisture probability. Clones of intermediate morphological characteristics were distributed with both T. angustifolia and T. latifolia. Rhizomes taken from the clones were grown in various NaCl solutions in the greenhouse. Results indicated greatest salt tolerance by T. angustifolia and least salt tolerance by T. latifolia. The intermediate, probably hybrid, clones were intermediate in salt tolerance. Seeds of the 3 clone-types germinated over the same range of salt concentration. The seeds of all 3 types withstood 4 months submergence in a 2% salt solution and germinated upon being returned to tap water. In the salt flat habitat, the clones of T. latifolia were not vigorous during the years 1956–1957 and many died or were reduced considerably in area of occupancy. The clones of T. angustifolia remained vigorous and flowered over the same period. The intermediate clones were vigorous and increased their coverage, primarily in areas that were occupied prior to 1956 by T. latifolia. The spatial adjustments within the population probably resulted from the selective action of increased salt concentration accompanying the drier conditions of 1956 and 1957.  相似文献   

9.
Preformation of organs involves the initiation of vegetative and generative tissues at least one season before they are actually produced. It is a strategy to deal with environments characterized by predictable seasonality as it enables fast growth of plants at the onset of favorable conditions. However, early preformation also strongly restricts plants in their response to unpredictable environmental changes and disturbance. In this study we investigated the response of the clonal forest understory herb Uvularia perfoliata to disturbance and resource limitation. In U. perfoliata shoot characteristics, as well as vegetative and sexual reproduction are determined at the end of the previous growing season. Plants were grown under two light levels and the rhizome connection between parent and offspring ramets were severed at various times during the growing period. Disturbance did not affect total biomass accumulation but it did affect the relative allocation and survival probability of parents and offspring ramets. Early severing resulted in increased survival chance and future fitness of the parent ramet, while late severing resulted in a higher survival chance and increased fitness of offspring ramets. The response was mediated by plant size and resource availability. These results show that the life history of U. perfoliata includes the possibility to alleviate the effects of disturbance even though the species is characterized by strong developmental canalization through organ preformation.Co-ordinating editor: J. Tuomi  相似文献   

10.
  • Senescence is a puzzling phenomenon. Few convincing studies of senescence in perennial herbaceous plants exist. While ramets are known to senesce, whether senescence of bunchgrasses actually occurs is not clear.
  • In this study, we grew a set of plants of Elymus excelsus, a bunchgrass, to examine plant size, sexual reproduction and bud formation in individual plants in relation to their gradual ageing, in order to determine whether E. excelsus experiences senescence. We collected data in two consecutive years (2009 and 2010) from field samples of plants from 1 to 5 years old. Using regression models, we performed age‐related analyses of growth and reproduction parameters.
  • Our results showed that individual plant size (diameter, individual biomass), total biomass of ramets, number and biomass of reproductive ramets, percentage of ramets that were reproductive, reproductive allocation, over‐wintering buds and juvenile ramets all declined with age. However, vegetative growth (number and biomass of vegetative ramets) did not decrease with age.
  • Those plants that survived, dwindled in size as they aged. However, no plants shifted their resource allocation between growth and reproduction as they aged, so the shift in allocation did not account for the fall in size.
  相似文献   

11.
Summary The costs and benefits of resource integration in Hydrocotyle bonariensis were examined by comparing severed and intact clones grown across multiple resource gradients. Basipetal movement of water, nitrogen and photosynthates was demonstrated to occur between two rhizome branch systems interconnecting hundreds of ramets within a clone. Hydrocotyle clones of this size and larger have been shown to span highly patchy and unpredictable resource conditions in coastal dune environments. The extensive movement of water and nitrogen to portions of a clone deficient in these resources, resulted in a significant net benefit to the clone in terms of fitness-related traits: total biomass, ramet proliferation and seed production. The translocation of photosynthates across light gradients allowed for sexual reproduction and clonal expansion in the shade although this incurred a net cost to the clone in terms of ramet and seed production.  相似文献   

12.
1. To test whether clonal macrophytes can select favourable habitats in heterogeneous environments, clonal fragments of the stoloniferous submerged macrophyte Vallisneria spiralis were subjected to conditions in which light intensity and substratum nutrients were patchily distributed. The allocation of biomass accumulation and ramet production of clones to the different patches was examined. 2. The proportion of both biomass and ramet number of clones allocated to rich patches was significantly higher than in poor patches. The greatest values of both clone and leaf biomass were produced in the heterogeneous light treatment, in which clones originally grew from light‐rich to light‐poor patches, while clones produced the most offspring ramets in the treatments with heterogeneous substratum nutrients. Similarly, root biomass had the highest values in nutrient‐rich patches when clones grew from nutrient‐rich to nutrient‐poor patches. 3. The quality of patches in which parent ramets established significantly influenced the foraging pattern. When previously established in rich patches, a higher proportion of biomass was allocated to rich patches, whereas a higher proportion of ramet number was allocated to rich patches when previously established in poor patches. 4. Results demonstrate that the clonal macrophyte V. spiralis can exhibit foraging in submerged heterogeneous environments: when established under resource‐rich conditions V. spiralis remained in favourable patches, whereas if established in adverse conditions it could escape by allocating more ramets to favourable patches.  相似文献   

13.
We studied as to how the inter-connected modular architecture of clonal Eichhornia crassipes allows nutrient to transfer from established ramets to developing ramets, and nitrate translocation within clonal system and how such a strategy may play an important role in successful establishment and expansion of this clonal plant. Using this stoloniferous E. crassipes as a model, we studied the effects of light and nitrate availability on growth and nitrate assimilation in inter-connected parent and offspring ramets. Our results showed that increase in light and nitrate availability significantly increased growth rate of the whole clonal fragments and reproduction of offspring ramets in E. crassipes. In addition, increases in nitrate reductase (NR) activity and glutamine synthetase (GS) activity were observed in both parent and offspring ramets with increase in light density and nitrate supply. We also found that nitrate translocation is greater in offspring ramets than in parent ramets under abundant light and nitrate environment in this fast-growing clonal plant. Consequently, majority of nitrate assimilation in offspring ramets is beneficial to the growth of whole clonal system, as indicated by a close correlation between nitrate assimilation in offspring ramets and RGR of whole clonal fragments. We strongly contend that nitrate translocation and assimilation within clone system is important for efficient utilization of nitrogen in alien clonal plant E. crassipes during establishment and expansion, and thus for increase in its invasiveness in natural water columns.  相似文献   

14.
Tidal wetlands worldwide are undergoing rapid invasions by tall-growing clonal grasses. Prominent examples are invasions by species of the genera Spartina, Phragmites and Elymus. The responsible physiological and ecological drivers of these invasions are poorly understood. Physiological integration (PI) is a key trait of clonal plants, which enables the exchange of resources among ramets. We investigated PI in Elymus athericus, which has been rapidly spreading from high-marsh into low-marsh environments of European salt marshes during the last decades. We applied a nitrogen stable-isotope approach to trace nutrient translocation between ramets in a factorial mesocosm experiment. The experiment was set up to mimic an invasion pattern commonly found in tidal wetlands, i.e. from high-elevated and rarely flooded into low-elevated and frequently flooded microenvironments. We tested for intraspecific variability in PI by including two genotypes of Elymus that naturally occur at different elevations within the tidal frame, a high-marsh (HM) and a low-marsh (LM) genotype. PI strongly increased offspring ramet aboveground and belowground biomass by 62 and 81%, respectively. Offspring ramets under drained conditions had 95% greater belowground biomass than those under flooded conditions. LM genotype offspring ramets produced 27% more aboveground biomass than HM genotypes. Offspring ramets were clearly more enriched in 15N under flooded versus drained conditions; however, this positive effect of flooding on δ15N was only significant in the LM genotype. Our findings demonstrate the importance of PI for the growth of Elymus offspring ramets and thereby for the species' capacity for fast vegetative spread. We show that offspring ramets under stressful flooded conditions are more dependent on nutrient supply from parent ramets than those under drained conditions. Our data furthermore suggest a higher degree of adaptation to flooding via PI in the LM versus HM genotype. In conclusion, we highlight the importance of assessing PI and intraspecific trait variability to understand invasion processes within ecosystems.  相似文献   

15.
We present 11 dinucleotide microsatellite DNA loci isolated from the narrow‐leaved cattail (Typha angustifolia) and describe conditions for their amplification. The PCR primers were tested on at least 20 individuals of Typha angustifolia and T. latifolia from two Ukrainian populations per species. The primers amplify loci with relatively high numbers of alleles (averaging 7.22 and 4.95 alleles per locus in T. angustifolia and T. latifolia, respectively), and polymorphic information content (averaging 0.61 and 0.46 in T. angustifolia and T. latifolia, respectively).  相似文献   

16.
Summary Lathyrus sylvestris is a pioneer legume often found in disturbed habitats. Mainly reproduced through vegetative propagation, this clonal species presents a system of ramets that remain connected for several years. The existence of carbon transfer among ramets within a clone has been studied using 14C in situ. Assimilate translocation from primary to secondary ramets was observed in all clones when the primary ramet was exposed to 14CO2. The amount of transfer ranged from trace up to 90% of the total 14C incorporated. However, in only half of the clones there was consistent enrichment of the secondary ramet (5 to 89%) suggesting that interramets transfer of carbon may be facultative. Furthermore, when significant export occurred from the primary ramet, it was always principally towards only one ramet even when the clone included more than one. The transfer of 14C from secondary to primary ramets was shown to be significant only when photosynthesis of the latter was decreased by shading. In this case import of carbon was never more than 60% of the incorporated 14C.No correlation was found between age or size of the ramets and the intensity of transfer. The shading effect let suppose that transfers are mainly driven by carbon limitation due to changing environmental conditions and not to the state of ramet maturity. The adaptative advantage of such facultative physiological integration between ramets of a clone is discussed.  相似文献   

17.
《Aquatic Botany》2005,83(4):296-309
We investigated to what extent DNA-markers can assist species determination in the genus Typha. A set of AFLP markers was used to discriminate samples of the species Typha latifolia and Typha angustifolia collected in Flanders (North Belgium). The T. latifolia samples formed a compact cluster while the T. angustifolia samples were divided into smaller groups. It was not clear whether interspecific hybrids or higher levels of diversity present in the T. angustifolia dataset could account for this. As in previous surveys, using isozyme and VNTR markers, AFLP markers revealed an almost complete lack of genetic variation in Flemish T. latifolia. Despite the low degree of diversity, a significant level of genetic differentiation was found between the T. latifolia samples originating from different river basins. Whether this differentiation has any ecological relevance remains to be investigated. The methodology applied was not able to detect clonal reproduction in T. latifolia. Probably, the low levels of diversity present in this species can account for this, indicating that the usefulness of the methodology applied depends on the level of diversity present in the species studied.  相似文献   

18.
A comparison was made of the radial oxygen loss (ROL) from the roots of three Typha species, Typha latifolia L., Typha orientalis Presl and Typha angustifolia L., which resemble each other in morphology. ROLs were evaluated in the laboratory for seedlings of T. orientalis and T. angustifolia in order to compare them with the ROL value for T. latifolia obtained in our previous study. Measurements were conducted using the highly oxygen-sensitive anthraquinone radical anion as an oxygen indicator, which enabled us to simulate the natural conditions in which the oxygen released from the root is immediately consumed by the soil. Among the three Typha species, the ROL was the highest in T. angustifolia, followed by T. latifolia and T. orientalis. Illumination significantly enhances the ROL of T. orientalis, and this effect was also observed for T. latifolia in our previous study, whereas it did not affect the ROL of T. angustifolia. These results indicate that ROL differs significantly between species, even among members of the same genus that are similar in morphology.  相似文献   

19.
The establishment of non-native species and the increase in atmospheric CO2, in combination, have the ability to alter current ecosystems. Previous studies have shown that invasive species tend to respond more strongly to CO2 than natives, but these comparisons have been of different and unrelated species. To assess how response to CO2 might be related to invasiveness per se, we compared a native (Typha latifolia) with a congeneric invasive (Typha angustifolia), as well as their hybrid (T. × glauca). All three taxa are common components of wetland vegetation, often occurring in near monocultures. An open-top chamber experiment was used to examine the effects of elevated and ambient CO2 concentrations on the three taxa. All three increased rhizome biomass by 40% in elevated CO2. Although the absolute increase did not differ among taxa, the invasive T. angustifolia had a much higher proportional response in biomass and photosynthetic rate (45 and 40% respectively). The weaker response of the two larger taxa native T. latifolia (16 and 2%) and hybrid T. × glauca (−4% and −1%) was possibly driven by soil nutrient deficiency, such that they were not able to benefit from increased CO2. However, under low nutrients the smaller species T. angustifolia may become more a problematic invader in the future.  相似文献   

20.
Leiothrix curvifolia var. lanuginosa and Leiothrix crassifolia are endemic and sympatric species in the Brazilian rupestrian grasslands, a habitat that has a predominance of sandy and shallow soils with low water retention. Based on the premise that soil moisture is one of the abiotic factors that affects most reproduction in plants, we hypothesized that the flowering phenology events and establishment of sexual and vegetative offspring would occur in the periods of higher soil water availability. We marked 478 ramets distributed among 100 genets of L. curvifolia var. lanuginosa and 693 ramets distributed among 100 genets of L. crassifolia, so that they could be observed monthly along the two rainy seasons from December 2003 to 2004. Both species showed phenological synchrony in the flower heads and seedlings production with soil moisture availability. Seedling mortality was intense in the dry period. Unlike the seedlings, the ramets survived was 100%. The greater capacity of ramets to survive can result from a much greater biomass compared with seedlings, and ramets become adult much faster. We conclude that for a successful seedling establishment, the synchronization with the rainy season was required, and moreover, that repeated seedling recruitment can be important for the maintenance of local populations of these species which suffer from high seedling mortality in the drought period. It is likely that the coincidence of the rainy period with seedling establishment is an important factor that determines the flowering phenological pattern of L. curvifolia var. lanuginosa and L. crassifolia in rupestrian grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号