首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many bacteria utilize sophisticated regulatory systems to ensure that some functions are only expressed when a particular population density has been reached. The term 'quorum-sensing' has been coined to describe this form of density-dependent gene regulation which relies on the production and perception of small signal molecules by bacterial cells. As in many pathogenic bacteria the production of virulence factors is quorum-sensing regulated, it has been suggested that this form of gene regulation allows the bacteria to remain invisible to the defence systems of the host until the population is sufficiently large to successfully establish the infection. Here we present first evidence that polyphenolic compounds can interfere with bacterial quorum-sensing. Since polyphenols are widely distributed in the plant kingdom, they may be important for promoting plant fitness.  相似文献   

2.
Messing with Bacterial Quorum Sensing   总被引:7,自引:0,他引:7       下载免费PDF全文
Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria.  相似文献   

3.
Quorum sensing is widely recognized as an efficient mechanism to regulate expression of specific genes responsible for communal behavior in bacteria. Several bacterial phenotypes essential for the successful establishment of symbiotic, pathogenic, or commensal relationships with eukaryotic hosts, including motility, exopolysaccharide production, biofilm formation, and toxin production, are often regulated by quorum sensing. Interestingly, eukaryotes produce quorum-sensing-interfering (QSI) compounds that have a positive or negative influence on the bacterial signaling network. This eukaryotic interference could result in further fine-tuning of bacterial quorum sensing. Furthermore, recent work involving the synthesis of structural homologs to the various quorum-sensing signal molecules has resulted in the development of additional QSI compounds that could be used to control pathogenic bacteria. The creation of transgenic plants that express bacterial quorum-sensing genes is yet another strategy to interfere with bacterial behavior. Further investigation on the manipulation of quorum-sensing systems could provide us with powerful tools against harmful bacteria.  相似文献   

4.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here.  相似文献   

5.
The communication or quorum-sensing signal molecules (QSSM) are specialized molecules used by numerous gram-negative bacterial pathogens of animals and plants to regulate or modulate bacterial virulence factor production. In plant-associated bacteria, genes encoding the production of these signal molecules, QSSMs, were discovered to be linked with the phenotype of bacterium, because mutation of these genes typically disrupts some behaviors of bacteria. There are other regulator genes which respond to the presence of signal molecule and regulate the production of signal molecule as well as some virulence factors. The synthesis and regulator genes (collectively called quorum-sensing genes hereafter) are repressed in low bacterial population but induced when bacteria reach to high cell density. Multiple regulatory components have been identified in the bacteria that are under control of quorum sensing. This review describes different communication signal molecules, and the various chemical, physical and genomic factors known to synthesize signals. Likewise, the role of some signal-degrading enzymes or compounds and the interaction of QSSMs with eukaryotic metabolism will be discussed here.  相似文献   

6.
Legume-nodulating bacteria (rhizobia) usually produce N-acyl homoserine lactones, which regulate the induction of gene expression in a quorum-sensing (or population-density)-dependent manner. There is significant diversity in the types of quorum-sensing regulatory systems that are present in different rhizobia and no two independent isolates worked on in detail have the same complement of quorum-sensing genes. The genes regulated by quorum sensing appear to be rather diverse and many are associated with adaptive aspects of physiology that are probably important in the rhizosphere. It is evident that some aspects of rhizobial physiology related to the interaction between rhizobia and legumes are influenced by quorum sensing. However, it also appears that the legumes play an active role, both in terms of interfering with the rhizobial quorum-sensing systems and responding to the signalling molecules made by the bacteria. In this article, we review the diversity of quorum-sensing regulation in rhizobia and the potential role of legumes in influencing and responding to this signalling system.  相似文献   

7.
8.
The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 μm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.  相似文献   

9.
Cell-density-dependent gene regulation by quorum-sensing systems has a crucial function in bacterial physiology and pathogenesis. We demonstrate here that the Staphylococcus aureus agr quorum-sensing regulon is divided into (1) control of metabolism and PSM cytolysin genes, which occurs independently of the small regulatory RNA RNAIII, and (2) RNAIII-dependent control of additional virulence genes. Remarkably, PSM expression was regulated by direct binding of the AgrA response regulator. Our findings suggest that quorum-sensing regulation of PSMs was established before wide-ranging control of virulence was added to the agr regulon, which likely occurred by development of the RNAIII-encoding region around the gene encoding the PSM delta-toxin. Moreover, the agr regulon in the community-associated methicillin-resistant S. aureus MW2 considerably differed from that previously determined using laboratory strains. By establishing a two-level model of quorum-sensing target gene regulation in S. aureus, our study gives important insight into the evolution of virulence control in this leading human pathogen.  相似文献   

10.
PilZ domain is part of the bacterial c-di-GMP binding protein   总被引:12,自引:0,他引:12  
Recent studies identified c-di-GMP as a universal bacterial secondary messenger regulating biofilm formation, motility, production of extracellular polysaccharide and multicellular behavior in diverse bacteria. However, except for cellulose synthase, no protein has been shown to bind c-di-GMP and the targets for c-di-GMP action remain unknown. Here we report identification of the PilZ ("pills") domain (Pfam domain PF07238) in the sequences of bacterial cellulose synthases, alginate biosynthesis protein Alg44, proteins of enterobacterial YcgR and firmicute YpfA families, and other proteins encoded in bacterial genomes and present evidence indicating that this domain is (part of) the long-sought c-di-GMP-binding protein. Association of the PilZ domain with a variety of other domains, including likely components of bacterial multidrug secretion system, could provide clues to multiple functions of the c-di-GMP in bacterial pathogenesis and cell development.  相似文献   

11.
12.
Studies of the last decade have shown that most bacteria exist in natural ecosystems as specifically organized, attached to substrates biofilms rather than as freely floating plankton cells. The formation of these biofilms is a complex and highly regulated process. The development of biofilm communities is a primary strategy of bacterial survival not only in the external environment but also in the bodies of infected macroorganisms. In these organisms, bacteria are joined by complicated cell–cell associations, which makes them functionally similar to multicellular organisms. In the present review, we consider the structural organization of biofilms, factors affecting initiation of the biofilm formation, differential expression of bacterial genes at various stages of the biofilm development and their regulation. The significance of studies in this field for medicine, in particular, for prevention and protection against pathogenic bacteria, is discussed.  相似文献   

13.
Today, we find ourselves in an urgent need for novel antibacterial drugs, as many important human pathogens have acquired multiple antibiotic resistance factors. Among those, Staphylococcus aureus and S. epidermidis play a major role as the leading sources of nosocomial infections. Recently, it has been suggested to develop therapeutics that attack bacterial virulence rather than kill bacteria. Such drugs are called "antipathogenic" and are believed to reduce the development of antibiotic resistance. Specifically, cell-density-dependent gene regulation (quorum-sensing) in bacteria has been proposed as a potential target. While promising reports exist about quorum-sensing blockers in gram-negative bacteria, the use of the staphylococcal quorum-sensing system as a drug target is now seen in an increasingly critical way. Inhibition of quorum-sensing in Staphylococcus has been shown to enhance biofilm formation. Furthermore, down-regulation or mutation of the Staphylococcus quorum-sensing system increases bacterial persistence in device-related infection, suggesting that interference with quorum-sensing would enhance rather than suppress this important type of staphylococcal disease. The chemical nature and biological function of another proposed staphylococcal quorum-sensing inhibitor, named "RIP", are insufficiently characterized. Targeting quorum-sensing systems might in principle constitute a reasonable way to find novel antibacterial drugs. However, as outlined here, this approach requires careful investigation in every specific pathogen and type of infection.  相似文献   

14.
细菌群体感应系统研究进展及其应用   总被引:2,自引:0,他引:2  
细菌能自发产生、释放一些特定的信号分子,并能感知其浓度变化,调节微生物的群体行为,这一调控系统称为群体感应。细菌群体感应参与包括人类、动植物病原菌致病力在内的多种生物学功能的调节。本文综述了细菌群体感应的最新研究进展,并阐述了其在生物技术领域的应用前景。  相似文献   

15.
16.
17.
In order to enter symbiosis with its legume partner, Sinorhizobium meliloti requires regulatory systems for the appropriate responses to its environment. For example, motility is required for the chemotactic movement of bacteria toward the compounds released by its host, and exopolysaccharides (EPS) are required for bacterial attachment to the root or for invasion of the infection thread. Previous research has shown that ExoR/ExoS/ChvI as well as the ExpR/Sin quorum-sensing system inversely regulate both motility and EPS production, although the regulation mechanisms were unknown. We were able to attribute the ExpR-mediated regulation of motility to the ability of ExpR to bind a DNA sequence upstream of visN when activated by N-acyl-homoserine lactone. Furthermore, MucR, previously characterized as a regulator of EPS production, also affected motility. MucR inhibited expression of rem encoding an activator of motility gene expression and, consequently, the expression of Rem-regulated genes such as flaF and flgG. Binding of MucR to the rem promoter region was demonstrated and a sequence motif similar to the previously identified MucR binding consensus was identified within this region. The swarming ability of S. meliloti Rm2011 was shown to depend on a functional ExpR/Sin quorum-sensing system and the production of both flagella and EPS. Finally, we propose a model for the coordination of motility and EPS synthesis in S. meliloti.  相似文献   

18.
In a process called quorum sensing, bacteria communicate using extracellular signal molecules termed autoinducers. Two parallel quorum-sensing systems have been identified in the marine bacterium Vibrio harveyi. System 1 consists of the LuxM-dependent autoinducer HAI-1 and the HAI-1 sensor, LuxN. System 2 consists of the LuxS-dependent autoinducer AI-2 and the AI-2 detector, LuxPQ. The related bacterium, Vibrio cholerae, a human pathogen, possesses System 2 (LuxS, AI-2, and LuxPQ) but does not have obvious homologues of V. harveyi System 1. Rather, System 1 of V. cholerae is made up of the CqsA-dependent autoinducer CAI-1 and a sensor called CqsS. Using a V. cholerae CAI-1 reporter strain we show that many other marine bacteria, including V. harveyi, produce CAI-1 activity. Genetic analysis of V. harveyi reveals cqsA and cqsS, and phenotypic analysis of V. harveyi cqsA and cqsS mutants shows that these functions comprise a third V. harveyi quorum-sensing system that acts in parallel to Systems 1 and 2. Together these communication systems act as a three-way coincidence detector in the regulation of a variety of genes, including those responsible for bioluminescence, type III secretion, and metalloprotease production.  相似文献   

19.
Living on a surface: swarming and biofilm formation   总被引:1,自引:0,他引:1  
Swarming is the fastest known bacterial mode of surface translocation and enables the rapid colonization of a nutrient-rich environment and host tissues. This complex multicellular behavior requires the integration of chemical and physical signals, which leads to the physiological and morphological differentiation of the bacteria into swarmer cells. Here, we provide a review of recent advances in the study of the regulatory pathways that lead to swarming behavior of different model bacteria. It has now become clear that many of these pathways also affect the formation of biofilms, surface-attached bacterial colonies. Decision-making between rapidly colonizing a surface and biofilm formation is central to bacterial survival among competitors. In the second part of this article, we review recent developments in the understanding of the transition between motile and sessile lifestyles of bacteria.  相似文献   

20.
Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems,vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号