首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The presence of gamma-glutamyl transpeptidase (GGT) in focal nodules of hepatocytes is a commonly used marker for the identification of preneoplastic cell populations. Female Fischer 344 rats were initiated with a single intragastric administration of 200 mg diethylnitrosamine/kg, altered cells were selected after 0.02% 2-acetylaminofluorene was given in the diet; this was followed by a partial hepatectomy and promotion with dietary sodium phenobarbital for 4 wk. A mixed-cell population of GGT-positive and GGT-negative hepatocytes was obtained after collagenase perfusion and Percoll purification. An enriched population of GGT-positive hepatocytes was obtained by a modified “panning” technique. With quantitative scintillation spectrometry and autoradiography of [3H]thymidine incorporation, replicative DNA synthesis of GGT-positive and GGT-negative rat hepatocytes was observed in both the mixed-cell population and the enriched GGT-positive and GGT-negative cell populations. Under the culture conditions used, GGT-positive cells showed a higher level of replicative DNA synthesis than did GGT-negative cells; this indicates that such altered hepatocytes in the stage of promotion possess an inherently greater capacity for all replication, as previously suggested from studies in vivo.  相似文献   

2.
Butylated hydroxytoluene (BHT) at concentrations of 300-6000 ppm in the diet caused a dose-dependent increase in gamma-glutamyl transpeptidase (GGT) activity in normal F344 male rat liver at 18 weeks. However, the activities of glutathione S-transferases (GSTs) of rat liver cytosol were enhanced only at concentrations of 3000 or 6000 ppm BHT. Histochemically, the enhanced GGT activity was localized to hepatocytes surrounding the portal areas. Autoradiographic measurements of DNA synthesis showed that dietary BHT did not increase the level of cell proliferation and the GGT-positive hepatocytes did not exhibit different rates of DNA synthesis from those of GGT-negative cells. Feeding of the liver carcinogen N-2-fluorenylacetamide (FAA) induced foci and nodules of GGT-positive altered cells which exhibited higher rates of DNA synthesis than those of surrounding GGT-negative hepatocytes. Following iron loading, the periportal GGT-positive hepatocytes produced by BHT accumulated cellular iron, whereas the cells in FAA-induced lesions excluded iron. These results suggest that dietary BHT induces GGT activity in periportal hepatocytes without proliferation of the cells and that induction does not represent fetal expression or a preneoplastic alteration.  相似文献   

3.
Butylated hydroxytoluene (BHT) protected against DNA damage induced in rat hepatocytes by 2-acetylaminofluorene (2AAF) or N-hydroxy 2AAF as shown by a marked reduction of unscheduled DNA synthesis. BHT also inhibited 2AAF-induced DNA damage (as shown by reduced repair) in human hepatocytes. In addition, rats pre-treated with BHT in the diet (0.5% w/w for 10 days) provided hepatocytes which exhibited less unscheduled DNA synthesis than did hepatocytes from control rats when these cells were exposed to either 2AAF or N-hydroxy 2AAF. The results indicate both direct (in vitro) and indirect (by pre-treatment in vivo) inhibitory effects of BHT on the genotoxicity of 2AAF in liver cells, in accord with the reported anti-tumorigenicity in the liver. This effect contracts with a BHT-mediated increase in the efflux of 2AAF-derived mutagens from liver cells which may contribute to enhanced extrahepatic carcinogenesis.  相似文献   

4.
H Slor 《Mutation research》1973,19(2):231-235
The carcinogen 7-bromomethylbenz(a)anthracene (BBA), which can bind strongly to DNA, induces unscheduled DNA synthesis (DNA repair) in normal lymphocytes but almost none in lymphocytes from patients with Xeroderma pigmentosum (XP), and inherited disease known to be defective in excision repair of ultraviolet-damaged DNA. We studied [3H]BBA's ability to bind to DNA of normal and XP lymphocytes, its influence on unscheduled DNA synthesis, and its removal from the DNA of both cell types. We found that 20–30% of the BBA is bound to macromolecules other than DNA and that its binding to DNA is essentially complete after 30 min. The induction of unscheduled DNA synthesis by the carcinogen in XP lymphocytes was approximately 10% of that induced in normal lymphocytes. While 15–20% of the BBA was removed from the DNA of normal cells 6 h after treatment, only 1–2% was removed from the DNA of XP cells. Thus, XP cells not only are defective in repairing ultraviolet-damaged DNA and excising thymine dimers but also fail to repair DNA damaged by certain carcinogens, and, most importantly, fail to remove the DNA-bound carcinogen, BBA.  相似文献   

5.
The effect of aphidicolin on the repair of chemically induced DNA damage in rat hepatocytes was examined. Alkaline elution analysis of DNA damage and autoradiographic examination of unscheduled DNA synthesis both indicate that the repair of DNA damage was inhibited by aphidicolin. Because aphidicolin has been shown to be a specific inhibitor of alpha polymerase, these results suggest that the alpha polymerase plays an active role in the repair of rat hepatocyte DNA.  相似文献   

6.
Measurement of DNA repair as unscheduled DNA synthesis (UDS) in vitro following exposure in vivo in multiple tissues from the same treated animal can provide valuable information relating to the tissue- and organ-specificity of chemically induced DNA damage. UDS was evaluated in primary cultures of rat tracheal epithelial cells, hepatocytes and pachytene spermatocytes after exposure in vitro to methyl chloride (MeCl), and after isolation from the same treated animal following inhalation exposure in vivo. Concentrations of 1-10% MeCl in vitro induced UDS in hepatocytes and spermatocytes, but not in tracheal epithelial cells. Inhalation exposure to MeCl in vivo (3000-3500 ppm 6 h/day for 5 successive days) failed to induce DNA repair in any cell type. In vivo exposure to 15 000 ppm MeCl for 3 h also failed to induce UDS in tracheal epithelial cells and spermatocytes, but did cause a marginal increase in UDS in hepatocytes. Thus, MeCl appears to be a weak, direct-acting genotoxicant. While activity could be measured in hepatocytes and spermatocytes directly in vitro, only extremely high concentrations of MeCl elicited a response in the whole animal, and then only in hepatocytes.  相似文献   

7.
The effect of aging and dietary restriction on DNA repair   总被引:1,自引:0,他引:1  
DNA repair was studied as a function of age in cells isolated from both the liver and the kidney of male Fischer F344 rats. DNA repair was measured by quantifying unscheduled DNA synthesis induced by UV irradiation. Unscheduled DNA synthesis decreased approximately 50% between the ages of 5 and 30 months in both hepatocytes and kidney cells. The age-related decline in unscheduled DNA synthesis in cells isolated from the liver and kidney was compared in rats fed ad libitum and rats fed a calorie-restricted diet; calorie restriction has been shown to increase the survival of rodents. The level of unscheduled DNA synthesis was significantly higher in hepatocytes and kidney cells isolated from the rats fed the restricted diet. Thus, calorie restriction appears to retard the age-related decline in DNA repair.  相似文献   

8.
Human population variability to standardized doses of N-acetoxy-2-acetylaminofluorene (NA-AAF) and 7, 12-dimethylbenz(a) anthracene (DMBA) was determined in cultured lymphocytes by measuring (a) differential stimulation of unscheduled DNA synthesis after 1 h induction of DNA damage by 10 micrometer NA-AAF, (b) the level of NA-AAF induced chromosome aberrations remaining after 8 h of DNA-repair synthesis, and (c) the level of [3H]DMBA bound to DNA after 18 h incubation of resting lymphocytes in 5 micrometer DMBA. All 3 parameters indicated individual variation to carcinogen exposure and were correlated to the population differences in age, sex, blood pressure and mortality rates. Males always had a greater potential to accumulate DNA-damage than did females regardless of the sampled population. DNA-damage potentials increased with increasing age, blood pressure or mortality rates. There was always proportionally greater DNA-damage potentials in the males than in females. The in vitro response of mature granulocytes to a 10 micrometer NA-AAF dose, as estimated by [3H] thymidine incorporation from unscheduled DNA synthesis, was much lower than lymphocyte response. Nevertheless, individual variations in granulocyte NA-AAF induced unscheduled DNA synthesis paralleled the inter-individual fluctuations observed in the lymphocyte responses to NA-AAF.  相似文献   

9.
2 hair dyes, HC Blue No. 1 and HC Blue No. 2, were evaluated for the in vitro induction of unscheduled DNA synthesis (UDS) in primary hepatocytes of rat, mouse, hamster, rabbit and monkey. NC Blue No. 1, which is identified as a carcinogen by the National Toxicology Program, induced UDS in all 5 systems. HC Blue No. 2, which is identified as a non-carcinogen, induced UDS in rat, mouse, hamster and rabbit primary hepatocytes. 3-Methylcholanthrene and methyl methanesulfonate were used as positive controls to determine the sensitivity of the test system.  相似文献   

10.
The vasodilator hydralazine was tested for induction of DNA-repair synthesis and stimulation of replicative DNA synthesis in rat hepatocytes after administration in vivo, either once or repetitively. No increase in unscheduled or replicative DNA synthesis was observed. By contrast, positive controls clearly induced DNA-repair synthesis, either after a single treatment (4-aminobiphenyl, dimethylnitrosamine and methyl methanesulphonate) or after repetitive treatment (benzo[a]pyrene), or stimulated replicative DNA synthesis (carbon tetrachloride and dimethylnitrosamine). Thus, hydralazine displayed no genotoxic and no tumour-promoting activity in these in vivo-in vitro test systems.  相似文献   

11.
DNA synthesis in hepatocytes was studied by incorporation of [3H]thymidine administered to portal vein of gamma-irradiated (80 Gy) rats. It was shown that the rate of replicative DNA synthesis decreased in hepatocytes of the regenerating liver and unscheduled DNA synthesis was induced at the nuclear matrix of resting cells of the intact liver. In addition to repair synthesis, DNA synthesis resembling replicative one ("aberrant" DNA synthesis) accounts for a considerable fraction of gamma-radiation-induced synthesis of DNA at the nuclear matrix.  相似文献   

12.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

13.
UV-induced DNA excision repair was studied as DNA repair synthesis and dimer removal in rat fibroblast cultures, initiated from either dense or sparse inocula of primary cells grown from skin biopsies. During passaging in vitro an initial increase in DNA repair synthesis, determined both autoradiographically as unscheduled DNA synthesis (UDS) and by means of the BrdU photolysis assay as the number and average size of repair patches, was found to be associated with a morphological shift from small spindle-shaped to large pleiomorphic cells observed over the first twenty generations. In cell populations in growth crisis, a situation exclusively associated with thin-inoculum cultures in which the population predominantly consisted of large pleiomorphic cells, UDS was found to occur at a low level. After development of secondary cultures into immortal cell lines, both repair synthesis and morphology appeared to be the same as in the original primary spindle-shaped cells. At all passages the capacity to remove UV-induced pyrimidine dimers was found to be low, as indicated by the persistence of Micrococcus luteus UV endonuclease-sensitive sites. These results are discussed in the context of terminal differentiation and immortalization of rat fibroblasts upon establishment in vitro.  相似文献   

14.
Okadaic acid (OA) is a marine toxin produced by dinoflagellates and responsible for human intoxications. OA is a specific inhibitor of serine/threonine protein phosphatases PP1 and PP2A and a potent tumor promoter in mouse skin and rat glandular stomach. In a previous study, we demonstrated that OA induced aneuploidy in CHO-K1 cells using the cytokinesis-block micronucleus (CBMN) assay coupled to FISH and concluded that OA was not a direct mutagen. As some previous in vitro mutagenicity studies had given positive results with OA, we decided to perform two additional in vitro mutagenicity assays in accordance with the OECD guidelines: (i) the CHO/Hprt test, which provides end points about locus-specific gene mutation; (ii) the in vitro unscheduled DNA synthesis (UDS) assay in rat hepatocytes, which measures [(3)H]thymidine incorporation into DNA undergoing excision repair. In the CHO/Hprt assay, there was no significant increase in the number of mutants for doses ranging from 5 to 5000 nM in the presence or absence of rat liver S9 fraction. In the in vitro UDS assay, OA did not induce primary DNA damages in rat hepatocytes following 18 h exposure at concentrations between 1.32 and 100 nM. As OA could affect the DNA repair systems via the inhibition of protein phosphatases, its effects on the repair kinetic of 2AAF-induced DNA damage were also investigated with the UDS assay. The results showed that OA did not interact with the DNA-repair process involved in in vitro UDS in rat hepatocytes. We concluded that OA failed to induce direct DNA damage but acted principally by altering the chromosome number, which could contribute to its carcinogenic effect.  相似文献   

15.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

16.
V Bohr  L K?ber 《Mutation research》1985,146(2):219-225
The ability to repair damage to DNA was compared in 2 groups of patients having undergone treatment for leukemia, one of which developed secondary leukemia (SL), and the other without signs of secondary malignancy (treated controls). Both were related to normal controls. DNA repair was assessed in isolated peripheral lymphocytes from the patients by measuring the rejoining of strand breaks following alkylation damage to the lymphocytes or by measuring unscheduled DNA synthesis. Day-to-day variability in the assays was considerable, but findings were that 5 out of 7 SL patients had repair deficiencies as measured by their ability to rejoin strand breaks, and 5 out of 7 had increased unscheduled DNA synthesis compared to treated and normal controls. All patients with SL and 4 out of 8 treated controls had inherent strand breaks in their DNA as compared to the normal controls when measured by alkaline elution.  相似文献   

17.
Capacity for excision repair of ultraviolet radiation damage to DNA in primary cultures of mouse embryonic cells is dependent on the gestational stage and the duration of in vitro growth. Fibroblasts of mouse embryos at 13–15 days gestation excise thymine dimers and perform unscheduled DNA synthesis after ultraviolet radiation. After several successive transfers in vitro, concomitantly with a pronounced reduction in growth rate, ability for excision repair decreases. DNA repair capacity is impaired in cells obtained from embryos at late stages of development (17–19 days gestation). Experiments with epithelial kidney cells from 5-day-old mice indicate that capacity for excision repair may depend on cell type and its origin.  相似文献   

18.
In previous studies on DNA repair during myogenesis, comparisons made of repair in post-replication myoblasts and in myotubes led to the conclusion that the capacity to repair damage in DNA decreased during myoblast differentiation. Using unscheduled DNA synthesis in response to UV-induced damage as an indicator of DNA repair in a myogenic line of rat skeletal muscle, it is demonstrated that nuclei in myotubes possess identical repair capacity as that in proliferating myoblasts. Furthermore, a brief increase in DNA repair capacity was observed to immediately follow the cessation of replicative DNA synthesis. This transient increase in repair capacity is consistent with the data of earlier reports and explains the previous but inappropriate conclusion that repair diminishes during myogenic differentiation. This transient increase in the capacity to repair DNA was not observed in a developmentally defective, non-differentiating line of similar myogenic origin.  相似文献   

19.
The zinc-finger DNA-binding domain (DBD) of poly (ADP-ribose) polymerase (PARP, EC 2.4.2.30) specifically recognizes DNA strand breaks induced by various DNA-damaging agents in eukaryotes. This, in turn, triggers the synthesis of polymers of ADP-ribose linked to nuclear proteins during DNA repair. The 46 kDa DBD of human PARP, and several derivatives thereof mutated in its first or second zinc-finger, were overproduced in Escherichia coli, in CV-1 monkey cells or in human fibroblasts to study their DNA-binding properties, the trans-dominant inhibition of resident PARP activity, and the consequences on DNA repair, respectively. A positive correlation was found between the in vitro DNA-binding capacity of the recombinant DBD polypeptides and their inhibitory effect on PARP activity stimulated by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Furthermore, overproduced wild-type DBD blocked unscheduled DNA synthesis induced in living cells by MNNG treatment, but not that induced by UV irradiation. These results define a critical role for the second zinc-finger of PARP for DNA single-stranded break binding and furthermore underscore the importance for PARP to act as a critical regulatory component in the repair of DNA damage induced by alkylating agents.  相似文献   

20.
Paracetamol was studied for possible genotoxic effects in V79 Chinese hamster cells. Paracetamol (0.5 mM for 30 min) reduced the rate of DNA synthesis in exponentially growing V79 cells to about 50% of control. A further decrease in the DNA synthesis was seen during the first 30 min after termination of paracetamol exposure. Paracetamol (3 and 10 mM for 2 h) caused a small increase in DNA single-strand breaks, as measured by the alkaline elution technique. After 16 h elution, the amount of DNA retained on the filters was 79 and 70% of controls in cells treated with 3 and 10 mM paracetamol respectively. No indication of DNA damage was seen in measuring the effect of paracetamol (0.25-10 mM for 2 h) on unscheduled DNA synthesis in growth-arrested cultures of V79 cells. At the highest concentrations (3 and 10 mM paracetamol), decreased unscheduled DNA synthesis was observed. Also UV-induced DNA-repair synthesis was inhibited by 3 and 10 mM paracetamol. DNA-repair synthesis was, however, inhibited at a much higher concentration than that inhibiting replicative DNA synthesis. The number of sister-chromatid exchanges (SCE) increased in a dose-dependent manner on 2 h exposure to paracetamol from 1 mM to 10 mM. At the highest dose tested (10 mM), the number of SCE increased to 3 times the control value. Co-culturing the V79 cells with freshly isolated mouse hepatocytes had no further effect on the paracetamol induced sister-chromatid exchanges. The present study indicates that paracetamol may cause DNA damage in V79 cells without any external metabolic activation system added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号