首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
构建城市典型绿化树种树冠外部轮廓预估模型,可以为城市绿化树种的空间配置优化奠定基础。本研究以辽宁省沈阳市典型绿化树种人工油松为对象,基于Crown Window装置获取60株样木树冠形状,利用幂函数、分段抛物线方程和修正Kozak方程选取基础模型,通过再参数化引入树冠结构因子(最大树冠半径)和相邻木竞争变量(相邻木平均树高、平均胸径、平均冠幅、相邻木株数,以及样木与其相邻木平均树冠接触高),构建耦合相邻木竞争及树冠结构因子的油松树冠外部轮廓预估模型。结果表明: 修正Kozak方程Ra2最大、均方根误差(RMSE)最小,模型稳定性良好,选取其为构建油松冠形模型的基础模型。通过再参数化在基础模型中引入最大树冠半径和相邻木平均胸径后,模型的Ra2提高0.0693,MSER为14.4%。分析最大树冠半径和相邻木竞争对油松树冠形状的影响发现,最大树冠半径对树冠形状影响较大,树冠半径随最大树冠半径增大而增大;相邻木平均胸径对树冠形状影响相比最大树冠半径较弱,树冠上半部分随相邻木竞争增强而增大,树冠下半部分随相邻木竞争增强而变小。本研究构建的耦合相邻木竞争及最大树冠半径的油松树冠外部轮廓边际回归模型具有良好的拟合优度,能够合理地模拟及预测沈阳市典型绿化树种人工油松的树冠形状。  相似文献   

2.
人工长白落叶松冠层光合作用-光响应曲线最优模型   总被引:9,自引:0,他引:9  
刘强  李凤日  谢龙飞 《生态学杂志》2016,27(8):2420-2428
以黑龙江省帽儿山林场15年生人工长白落叶松为研究对象,采用直角双曲线模型(RH)、非直角双曲线模型(NRH)、指数模型(EM)、修正直角双曲线模型(MRH)和修正指数模型(MEM)分别对4种不同光响应特征的光合作用-光响应曲线(光抑制型光响应曲线,PLCi;光饱和型光响应曲线,PLCs;未饱和型光响应曲线,PLCu;弱光环境下植被的光响应曲线,PLCw)进行拟合,计算出光饱和时的最大净光合速率(Pn max)、暗呼吸速率(Rd)、光补偿点(LCP)、光饱和点(LSP)及表观量子效率(AQY)等重要的光合生理指标,综合对比5个候选模型对不同响应曲线的拟合优度和对光合生理指标的估计精度.结果表明: MEM模型仅适用于拟合光抑制型曲线,MRH对光抑制型曲线和光饱和型曲线的拟合效果最好(Ra2分别为0.9986和0.9978),NRH最适合拟合未饱和型曲线和弱光环境型曲线(Ra2分别为0.9996和0.9963).在所有类型曲线中,MRH模型估计Pn max时,平均相对误差绝对值(MAPE)最低(0.1%Rd表现出更准确的估计(MAPE分别为1.8%、0.1%和3.9%);RH模型对光抑制型曲线的LCP及光饱和型曲线的Rd有更好的估计效果(MAPE分别为1.0%和2.7%);EM模型适用于估计弱光环境型曲线的LCP(MAPE为0.2%).MRH在保证较好的模型拟合效果及光合生理指标估计精度以外,还在拟合不同类型曲线时表现出极高的稳定性,因此,本文选择MRH模型作为拟合人工长白落叶松冠层光合作用-光响应曲线的最优模型.  相似文献   

3.
构建一个普适性的植物叶片气孔导度(gs)对CO2浓度响应(gs-Ca)的模型, 对定量研究植物叶片gs对CO2浓度的响应变化尤为必要。该研究运用便携式光合仪(LI-6400)测量了大豆(Glycine max)和小麦(Triticum aestivum)光合作用对CO2的响应曲线(An-Ca), 在比较传统的Michaelis-Menten模型(M-M模型)和叶子飘构建的CO2响应模型拟合大豆和小麦An-Ca效果的基础上, 构建了gs-Ca响应新模型。然后用新构建的模型拟合大豆和小麦的gs-Ca曲线, 并将拟合结果与传统模型的拟合结果, 以及与其对应的观测数据进行比较, 以判断所构建模型是否合理。结果显示: 叶子飘构建的An-Ca模型可较好地拟合大豆和小麦的An-Ca曲线, 确定系数(R2)均高达0.999。M-M模型拟合大豆和小麦的An-Ca曲线时的R2虽然也较高, 但在较高CO2浓度时的拟合曲线偏离观测曲线。因此, 基于叶子飘的An-Ca模型构建gs-Ca模型更为可行。新构建的gs-Ca模型可较好地拟合大豆和小麦的gs-Ca曲线, R2分别为0.995和0.994, 而且还可以直接给出最大气孔导度(gs-max)、最小气孔导度(gs-min), 以及与gs-min相对应的CO2浓度值(Cs-min)。拟合得到大豆和小麦的gs-max分别为0.686和0.481 mol·m-2·s-1, 与其对应的观测值(分别为0.666和0.471 mol·m-2·s-1)之间均不存在显著差异; 同样, 拟合得到的大豆和小麦的gs-min分别为0.271和0.297 mol·m-2·s-1, 与其对应的观测值(分别为0.279和0.293 mol·m-2·s-1)之间也均不存在显著差异; 此外, 新构建的gs-Ca模型给出大豆和小麦的Cs-min值分别为741.45和1 112.43 μmol·mol -1, 与其对应的观测值(732.78和1 200.34 μmol·mol -1)也不存在显著差异。由此可见, 该研究新构建的gs-Ca模型可作为定量研究植物叶片气孔导度对CO2浓度变化的有效数学工具。  相似文献   

4.
基于大、小兴安岭地区212块白桦天然林固定样地复测数据和区域内及周边共30个气象站点数据,构建了基于气象因子的单木生长模型.在此基础上,通过分析大、小兴安岭地区林分因子及气象因子的差异,采用哑变量方法构建了含区域效应的单木直径生长模型.结果表明: 生长季最低温度(Tg min)和生长季降雨量(Pg m)是影响两地区白桦胸径生长量的主要气象因素.Tg minPg m与胸径生长量均呈正相关关系,但Tg min对胸径生长量的影响程度存在明显的区域差异.引入Tg minPg m的单木生长模型比仅含林分因子的单木生长模型的调整后确定系数(Ra2)提高了11%(Ra2=0.56),说明气象因子可以很好地解释该地区白桦生长情况;采用哑变量法构建的含区域效应的胸径生长模型将Ra2提高了18%(Ra2=0.59),且有效解决了模型参数区域不相容的问题.模型检验结果表明,含区域效应的哑变量单木胸径生长模型对大、小兴安岭地区白桦胸径生长量的预估效果最好,平均偏差、平均绝对偏差、平均相对偏差和平均相对偏差绝对值分别为0.0086、0.4476、5.8%和20.0%.基于气象因子的哑变量单木胸径生长模型可以很好地描述大、小兴安岭地区白桦的胸径生长过程.  相似文献   

5.
人工长白落叶松立木叶面积预估模型   总被引:1,自引:0,他引:1  
叶面积影响着树木干物质的生产,进而影响树木乃至整个林分的生长,而叶面积准确估计对分析树木和林分生长具有重要作用.本研究基于黑龙江省长白落叶松人工林中76株解析木数据,分别建立枝条层面和单木层面的叶面积预估模型.结果表明: 考虑样木层次随机效应的最优枝条叶面积混合效应模型包含lnBD(BD为枝条基径)、lnRDINC(RDINC为相对着枝深度)和lnCR(CR为冠长率)3个随机效应参数,具体形式为:lnBLA=β1+(β2+b2)lnBD+(β3+b3)lnRDINC+β4lnDBH+β5lnHT/DBH+(β6+b6)lnCR,其中:βi和bi分别是模型的固定效应参数和随机效应参数;DBH为树木胸高处直径;HT/DBH为树高与胸径的比值.模型的修正决定系数(Ra2)为0.90,均方根误差(RMSE)为0.5477,平均偏差(ME)为-0.03,平均绝对偏差(MAE)为0.24,预测精度(P)为91%,枝条叶面积预估模型的预估效果较好.以枝条叶面积预估模型为基础,计算树冠叶面积并建立树冠叶面积预估模型,最终形式为:lnCLA=γ01lnDBH+γ2CR,其中,γi为模型参数.似然比检验结果(P>0.05)说明该模型不用考虑样地层次的随机效应.本研究所建立的立木树冠叶面积预估模型的决定系数(R2)为0.87,RMSE为0.3847,拟合效果好,可以很好地预测人工长白落叶松立木树冠叶面积,为以后叶面积分布和光合作用的研究提供了理论基础.  相似文献   

6.
千烟洲针叶林的比叶面积及叶面积指数   总被引:18,自引:1,他引:18       下载免费PDF全文
根据实测数据计算了湿地松(Pinus elliotii)、马尾松(P. massoniana) 和杉木(Cunninghamia lanceolata)不同年龄、不同类型叶片的生物量和比叶面积,并结合样地调查数据和相对生长方程计算了中国科学院千烟洲试验站20年生湿地松林、马尾松林、杉木林和针叶混交林的叶面积指数。根据拟合结果,选择如下方程计算3个树种的叶生物量:湿地松W=12.074 1D2.151 5、马尾松W=6.972 7D2.197 3和杉木W=5.261 9D2.302 7。湿地松林的叶生物量(0.822 kg·m-2)最大,其次为针叶混交林(0.679 kg·m-2),马尾松林和杉木林相差不大(分别为林0.528和0.572 kg·m-2)。不同树种、不同年龄、不同类型叶片的比叶面积比较发现,新叶的比叶面积大于老叶,三针一束叶的比叶面积略大于两针一束叶,马尾松的平均半比表面积(8.62 m2·kg-1)大于湿地松(6.04 m2·kg-1)和杉木(7.91 m2·kg-1)。胸径与单木叶片半表面积之间的经验方程为:湿地松LA=0.073D2.151 5、马尾松LA=0.060D2.197 3和杉木LA=0.042D2.302 7。据此计算湿地松林的叶面积指数为5.03,马尾松林和杉木林为4.31,针叶混交林为4.77,该结果比利用CI-110植被冠层数字图像仪测得的结果偏大。  相似文献   

7.
森林碳储量约占陆地碳储量的45%,准确评估森林碳储量对于森林的科学经营管理及规划具有重要意义。基于2015—2018年黑龙江省佳木斯市孟家岗、尚志帽儿山、小九林场以及东京、林口林业局的77棵人工长白落叶松的解析木数据,分析5种树木成分(即干材、树皮、树枝、树叶和树根)的含碳量分配及含碳率变化,构建了长白落叶松总量及各分项的一元及二元可加性含碳量模型,模型参数估计采用非线性似乎不相关回归模型方法,并采用“刀切法”对模型进行检验,评价其预测能力。结果表明:各分项加权平均含碳率差异显著,树枝(49.3%)>树皮(48.7%)>树叶(48.5%)>干材(48.2%)>树根(47.1%)。地上含碳量约占总含碳量的80%,地下含碳量约占20%。可加性含碳量模型的调整后确定系数Ra2大于0.89,平均绝对误差(MAE)小于4.1 kg,绝大多数模型的平均绝对误差百分比(MAE%)小于30%。引入树高变量,可以有效地提高大部分含碳量模型的拟合效果和预测能力。其中,总量、地上、干材和树皮含碳量模型拟合效果较好,树枝、树叶、树根和树冠含碳量模型拟合效果相对较差。  相似文献   

8.
董利虎  李凤日 《生态学杂志》2016,27(12):3862-3870
区域森林生物量的估算方法是人们目前关注的焦点,建立林分生物量模型成为一种趋势.本文以吉林省落叶松人工林固定样地为例,采用非线性似乎不相关回归法构建2种林分生物量模型,即基于林分变量的林分生物量模型(模型系统Ⅰ)和基于生物量换算系数的林分生物量模型(模型系统Ⅱ),给出落叶松人工林固定生物量换算系数值,并比较了3种林分生物量估算方法的预估精度.结果表明: 所建立的2种林分生物量模型中,总生物量和树干生物量模型拟合和预测效果较好,其Ra2>0.95,且均方根误差(RMSE)、平均预测误差(MPE)和平均绝对误差(MAE)都较小.树叶和树枝生物量模型拟合和预测效果相对较差,其模型的Ra2<0.95.模型系统Ⅰ和模型系统Ⅱ的预测精度均优于固定生物量换算系数法.基于生物量换算系数的林分生物量模型属于材积源生物量法,其本质与基于林分变量的林分生物量模型不同,但二者的预测效果相当.固定生物量换算系数的预测能力较差,将生物量与蓄积量之比假定为恒定常数是不恰当的.此外,为了使模型参数估计更有效,所建立的生物量模型应当考虑林分总生物量及各分项生物量的可加性.  相似文献   

9.
利用ChinaFLUX长白山站阔叶红松林的通量观测数据以及同期卫星遥感数据,对3PG模型中的植被光合模型(VPM)、光能利用率模型(EC-LUE)、陆地生态系统模型(TEM)、卡内基-埃姆斯-斯坦福方法模型(CASA)4种模型进行参数重组,通过对比通量观测值与估算值的均方根误差、决定系数及平均误差确定模型的最适合参数;并利用实测的通量观测数据对优化后的模型进行拟合度验证,以提高其估算长白山阔叶红松林总初级生产力(GPP)的准确性.结果表明: 采用温度、增强植被指数、地表水分指数分别表征原模型中的温度限制因子、光合有效辐射吸收比例、水分限制因子估算长白山阔叶红松林GPP时,结果最优,优化后模型的精度(R2=0.948,RMSE=0.035 mol·m-2·month-1)明显优于原模型(R2=0.854,RMSE=0.177 mol·m-2·month-1),且能够有效改善原模型生长季明显高估的现象;通过敏感性分析可知,温度是对GPP估算不确定性影响最大的参数,其次为增强型植被指数和光合有效辐射,地表水分指数最小,且变量间的交互作用对GPP估算不确定性也存在影响.  相似文献   

10.
干旱胁迫降低了内蒙古羊草草原的碳累积   总被引:3,自引:0,他引:3       下载免费PDF全文
采用涡度相关法, 分析了2004年(平水年)和2005-2006年(干旱年)生长季内蒙古锡林河流域羊草(Leymus chinensis)草原的净生态系统碳交换(net ecosystem exchange, NEE)、总初级生产力(gross primary productivity, GPP)和生态系统呼吸(ecosystem respiration, Re)的季节和年度变化。结果表明: 平水年羊草草原的日最大GPPRe分别为4.89和1.99 g C·m-2·d-1, 而干旱年GPPRe分别为1.53-3.01和1.38-1.77 g C·m-2·d-1。与平水年相比, 干旱年日最大GPP、Re分别下降了38%-68%和11%-12%。平水年羊草草原累积的GPPRe分别为294和180 g C·m-2, 而在干旱年分别为102-123 g C·m-2和132-158 g C·m-2。和平水年相比, 干旱年的GPPRe分别下降了58%-65%和12%-27%。用Van’t Hoff模型模拟的8个窄土壤含水量(θ)跨度生态系统呼吸(Re)对土壤温度(Ts)的敏感程度表明: 曲线斜率在θ = 0.16-0.17 m3·m-3范围内达到最大, 高于或者低于这个阈值, ReTs的敏感度降低。干旱胁迫降低了生态系统生产力和生态系统呼吸量。与平水年相比, 干旱年的GPPRe下降的幅度更大, 干旱胁迫降低了内蒙古羊草草原的碳累积, 使生态系统由碳汇变为碳源。  相似文献   

11.
《植物生态学报》2017,41(8):826
Aims Climate change has significant effects on net primary productivity (NPP) in forests, but there is a large uncertainty in the direction and magnitude of the effects. Process-based models are important tools for understanding the responses of forests to climate change. The objective of the study is to simulate changes in NPP of Larix olgensis plantations under future climate scenarios using 3-PG model in order to guide the management of L. olgensis plantations in the context of global climate change.Methods Data were obtained for 30 permanent plots of L. olgensis plantations in Siping, Linjiang, Baishan, etc. of Jilin Province, and a process model, 3-PG model, was applied to simulate changes in NPP over a rotation period of 40 years under different climate scenarios. Parameter sensitivity was also determined. Important findings The locally parameterized 3-PG model well simulates the changes in NPP against the measured NPP data, with values between 272.79-844.80 g·m-2·a-1 and both mean relative error and relative root mean square error within 12%. The NPP in L. olgensis plantations would increase significantly with increases in atmospheric CO2 concentration, temperature and precipitation collectively. However, an increase in temperature alone would lead to a decrease in NPP, but increases in precipitation and atmospheric CO2 concentration would increase NPP; the positive effect of increasing precipitation appears to be weaker than the negative effect of increasing temperature. Sensitivity analysis shows that the model performance is sensitive to the optimum temperature, stand age at which specific leaf area equals to half of the sum of specific leaf area at age 0 (SLA0) and that for mature leaves (SLA1), and days of production loss due to frost.  相似文献   

12.
本研究以帽儿山地区长白落叶松人工林为对象,基于样地调查和文献数据,利用CO2FIX模型定量模拟轮伐期(30、40、50、60年)、立地指数(12、16、20 m)和初植密度(2500、3333、4444 株·hm-2)对长白落叶松人工林碳平衡过程的影响,并构建林分尺度下生物量碳库、土壤碳库和林产品碳库之间的碳流通过程。结果表明: CO2FIX模型对帽儿山地区长白落叶松人工林生物量和蓄积量的生长过程模拟结果具有较高的可靠性,模拟值和实测值平均相对误差分别为6.4%和3.7%。在初植密度3333 株·hm-2、立地指数16 m、轮伐期40年的基准条件下,长白落叶松人工林总碳储量及各碳库碳储量均随轮伐期呈周期性变化。林分总碳储量和蓄积量均随轮伐期的延长、立地指数的提升和初植密度的增加而增加。当轮伐期分别延长10年和20年时,林分碳储量分别增加12.2%和31.2%,林分蓄积增加36.7%和67.8%;而当轮伐期缩短10年时,林分碳储量和蓄积量则分别降低20.9%和40.4%。与初植密度2500 株·hm-2相比,初植密度为3333和4444 株·hm-2时,林分碳储量增长率分别为27.8%和50.9%,蓄积量增长率分别为27.4%和49.1%。当立地指数在12~20 m范围时,每提高4 m,林分碳储量增长36.0%、40.3%,蓄积量增长39.3%、44.2%。在一个轮伐期内,每公顷长白落叶松人工林可固定约271.57 t C;当轮伐期结束时,约有27.47和56.75 t C流转到土壤和木材产品碳库中。因此,当立地条件较好时,采用较高初植密度(4444 株·hm-2)和较长轮伐期(60年)的管理模式更有利于长白落叶松人工林碳汇和木材效益的最大化。  相似文献   

13.
氮供给和种植密度是影响植物生长的两个重要因素。豆科植物因其生物固氮能力而在受到氮限制的生态系统中具有重要作用, 氮含量增加促进植物生长的同时也会抑制豆科植物的生物固氮能力, 种植密度会通过种内竞争影响豆科植物的生长和生物固氮能力, 然而少有研究关注氮肥添加和种植密度对豆科植物生长和生物固氮能力的影响。该研究以达乌里胡枝子(Lespedeza davurica)为研究对象, 通过温室盆栽实验, 探究氮肥和种植密度对其生长和生物固氮的影响。实验设置4个氮添加水平(0、5、10、20 g·m-2·a-1)和3种种植密度(1、3、6 Ind.·pot-1, 约32、96、192 Ind.·m-2)。结果发现: 1)施肥和密度增加均影响了达乌里胡枝子的生长。叶片碳(C)、氮(N)含量、净光合速率随施氮量增加而增加, 氮添加也促进了植物的生长, 当施氮量为10 g·m-2·a-1时植物产量达到最大。叶片C、N含量、净光合速率随种植密度增加而下降, 密度增加可以促进每盆的总生物量, 但对单个植株的生长有负效应。2)氮肥对根瘤形成有抑制作用, 但种植密度增加会缓解氮肥对生物固氮能力带来的“氮阻遏”。该实验条件下, 当施氮量为10 g·m-2·a-1, 种植密度为3 Ind.·pot-1, 或施氮量为5 g·m-2·a-1, 种植密度为6 Ind.·pot-1时, 能最大程度发挥“施氮增产”和种植密度缓解“氮阻遏”的作用。氮添加降低了达乌里胡枝子的根瘤生物量和对根瘤形成的投资(根瘤生物量占总生物量的比例), 从而抑制达乌里胡枝子的生物固氮。种植密度增加导致达乌里胡枝子因种内竞争增加而使资源获取受限, 从而增加对根瘤的投资和根瘤生物量来获得更多来自大气中的氮。3)结构方程结果显示, 氮肥和种植密度通过直接或间接作用, 解释了64%的达乌里胡枝子生物量变化和42%的根瘤生物量变化。上述结果表明合理优化豆科植物的施肥量和种植密度可能对人工草地种植以及退化草地恢复管理具有重要意义。  相似文献   

14.
黑龙江省红松人工林枝条分布数量模拟   总被引:1,自引:0,他引:1  
郑杨  董利虎  李凤日 《生态学杂志》2016,27(7):2172-2180
基于黑龙江省佳木斯市孟家岗林场的12块样地65株人工红松解析木的955个枝解析数据,以Poisson回归模型和负二项回归模型作为备选模型,构建了人工红松二级枝条数量分布模型,并采用AIC、Pseudo-R2、均方根误差(RMSE)和Vuong检验对模型的拟合优度进行比较.结果表明: 每轮一级枝条分布数量集中在3~5个,均值为4个,一级枝条分布数量与人工红松自身的枝条属性相关.一级标准枝上二级枝条分布的离散程度较大,利用全部子回归技术构建二级枝条分布数量模型,最终选择以负二项回归模型为基础的E(Y)=exp(β0+β1lnRDINC+β2RDINC2+β3HT/DBH+β4CL+β5DBH)作为二级枝条分布数量最优预测模型(β为参数;RDINC为相对着枝深度;HT为树高;DBH为胸径;CL为冠长).最优模型的Pseudo-R2为0.79,平均偏差接近于0,平均绝对偏差<7.对于所建立的模型,lnRDINCCLDBH的参数为正值,RDINC2HT/DBH的为负值,随着RDINC增大,在树冠内二级枝条分布数量存在最大值.总的来说,所建立的人工红松二级枝条分布数量模型的预测精度为96.4%,可以很好地预估该研究区域人工红松二级枝条分布数量,为以后枝条的光合作用和生物量的研究提供了理论基础.  相似文献   

15.
在对1800、3000和4500株hm-23种密度杉木林生长调查及生物量测定的基础上,测定3种密度杉木林各组分养分含量和养分积累量,研究其地上部分养分积累量的垂直空间分配,为杉木林高效培育提供科学依据.结果 表明:1800、3000和4500株·hm-2杉木林养分积累总量分别为1311.57、2531.55和2307....  相似文献   

16.
基于涡动相关系统观测的民勤绿洲荒漠过渡带梭梭人工林生态系统通量资料,定量分析了2018年生长季(5—10月)碳通量变化特征及其影响因子,为民勤梭梭人工林生态系统碳源/汇的评估提供基础数据.结果表明: 生长季净碳交换量在日尺度上呈对称的“U”型曲线变化;在季节尺度上,呈双峰曲线变化规律,各月均为碳汇,总固碳量为34.38 g C·m-2,且9月固碳量较高,为12.31 g C·m-2,7月最低,为0.89 g C·m-2.白天生态系统净碳交换随光合有效辐射的增加而增加,符合直角双曲线关系,但当饱和水汽压差大于2.5 kPa时,增加程度减弱.生态系统呼吸与气温呈较好的指数关系,其温度敏感性系数为1.7.整个生长季期间,白天和夜间的净碳交换量均与土壤温度呈显著相关  相似文献   

17.
对植物水分利用效率的研究,可以揭示植物的内在耗水机制,为区域森林生态系统经营与维护提供依据.本研究以侧柏幼树为研究对象,通过室内控制试验设置不同的土壤水分梯度,分别用气体交换法和稳定同位素法对其不同土壤含水量条件下的瞬时水分利用效率(WUEgs)和短期水分利用效率(WUEcp)进行研究.结果表明:受气孔导度(gs)的影响,叶片净光合速率(Pn)和蒸腾速率(Tr)随土壤含水量的增加呈现相同的变化趋势,均在土壤含水量为70%~80%田间持水量(FC)时达到最大值;叶片WUEgs则在土壤含水量最低(35%~45% FC)时达到最大值(7.26 mmol·m-2·s-1).叶片可溶性糖、枝条韧皮部渗出液的δ13C都在土壤含水量最低(35%~45% FC)条件下达到最大值,且叶片可溶性糖的δ13C明显高于枝条韧皮部渗出液的δ13C,未产生明显分馏;而叶片WUEcp也在土壤含水量最低(35%~45% FC)时达到最大值(7.26 mmol·m-2·s-1).相同条件下,叶片WUEgs和WUEcp存在一定差异(平均相差0.52 mmol·m-2·s-1),WUEgs时空变异性较大,而WUEcp更具有代表性.侧柏幼树通过降低生理生态活动和提高水分利用效率来适应干旱的土壤条件.  相似文献   

18.
为了更好地理解温带阔叶红松原始林群落主要树种的生理生态学特征,为森林生态系统碳动态的模拟预测提供基础数据,本研究依托中国科学院长白山森林生态系统定位站,首次利用冠层塔吊原位测定了阔叶红松原始林群落4个主要树种成熟大树的CO2响应曲线,并利用FvCB模型计算了一些重要的光合生理参数.结果表明: 红松的光合速率(A)、最大羧化速率(Vc max)和气孔导度(gs)均最小,而其气孔对光合的限制性(Ls)最大.水曲柳、蒙古栎和紫椴这3个阔叶树种的光合特征也存在显著差异.基于叶片面积的Vc max大小顺序为:水曲柳(83.2 μmol·m-2·s-1)、蒙古栎(89.3 μmol·m-2·s-1)>紫椴(68.4 μmol·m-2·s-1)、红松(68.8 μmol·m-2·s-1)(P<0.05),而基于叶片质量的Vc max大小顺序为:水曲柳(1.36 μmol·g-1·s-1)>蒙古栎(1.03 μmol·g-1·s-1)>紫椴(0.90 μmol·g-1·s-1)>红松(0.42 μmol·g-1·s-1)(P<0.05).7—9月,水曲柳和蒙古栎的A值显著降低,而紫椴和红松的A值变化不显著;所有树种Vc max都随季节发生显著下降.在温带阔叶红松林生态系统碳动态的模拟预测中,应该考虑Vc max的季节变化.  相似文献   

19.
研究片段化森林中土壤呼吸速率的格局对进一步揭示陆地生态系统碳循环具有重要意义。本研究以千岛湖人工陆桥岛屿系统不同生境(岛屿与大陆,岛屿边缘与岛屿内部)为对象,分析了土壤呼吸速率的季节动态变化规律及其与土壤理化因子的关系。结果表明: 1)土壤呼吸速率在不同季节差异显著。夏季(3.74 μmol·m-2·s-1)>秋季(2.30 μmol·m-2·s-1)>春季(1.82 μmol·m-2·s-1)>冬季(1.40 μmol·m-2·s-1)。2)森林片段化对土壤呼吸速率产生显著影响,岛屿土壤呼吸速率(2.37 μmol·m-2·s-1)显著高于大陆(2.08 μmol·m-2·s-1);岛屿边缘土壤呼吸速率(2.46 μmol·m-2·s-1)显著高于岛屿内部(2.03 μmol·m-2·s-1)。3)土壤温度显著促进了土壤呼吸速率,并作为主要因子解释了56.1%的变化。4)土壤呼吸速率与土壤全碳、铵态氮含量和地表植被覆盖率呈显著正相关。土壤全碳和铵态氮含量在岛屿边缘显著高于岛屿内部。综上,森林片段化促进了土壤呼吸速率,而土壤理化因子的变化是其主要原因。  相似文献   

20.
2018年2月至2019年1月,利用尼龙网袋法对滇中亚高山华山松和云南松两种人工林开展模拟氮(N)沉降下凋落叶和凋落枝原位分解试验,N沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低N(LN, 5 g N·m-2·a-1)、中N(MN, 15 g N·m-2·a-1)和高N(HN, 30 g N·m-2·a-1)。结果表明: 华山松凋落叶和凋落枝年分解率分别为34.8%和18.0%,分别高于云南松凋落叶的32.2%和凋落枝的16.1%。模拟N沉降下,LN处理使华山松凋落叶、枝分解95%所需时间较对照分别减少0.202和1.624年,MN处理分别减少0.045和1.437年,HN处理则分别增加0.840和2.112年;LN处理使云南松凋落叶、枝分解95%所需时间较对照分别减少0.766和4.053年,MN处理分别增加0.366和0.455年,HN处理分别增加0.826和0.906年。经过1年的分解,低N处理促进了华山松和云南松凋落物(叶、枝)的分解,而高N处理表现为抑制作用;N沉降对两种林型凋落物分解的影响与凋落物中纤维素和木质素含量密切相关。可见,凋落物基质质量在一定程度上决定了凋落物分解对N沉降的响应情况,尤其是纤维素和木质素含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号